
SEPTEMBER 2004 VOLUME:9 ISSUE:9

No. 1 i-Technology Magazine in the World

T H E W O R L D ’ S L E A D I N G i - T E C H N O L O G Y M A G A Z I N E W W W . S Y S - C O N . C O M / J D J

PLUS...RETAILERS PLEASE DISPLAY
UNTIL OCTOBER 31, 2004

SEPTEMBER 2004 VOLUME:9 ISSUE: VOLUME:9 ISSUE: VOLUME:9 ISSUE: VOLUME:9 ISSUE:9

WHEN
MARS
IS TOO
BIG
TO DOWNLOAD

Connecting the Java World
to Grid-Enabled Databases
Writing
Java Card Applications

SHOULD SUN OPEN SOURCE JAVA? PG 62

PAGE 10

The Java
Job Market

Beyond
Entity Objects

5September 2004www.SYS-CON.com/JDJ

SEPTEMBER 2004 VOLUME:9 ISSUE:9

contents
JDJ Cover Story

Generating simple terrains with Java3D

52

JDJ (ISSN#1087-6944) is published monthly (12 times a year) for $69.99 by
SYS-CON Publications, Inc., 135 Chestnut Ridge Road, Montvale, NJ 07645.
Periodicals postage rates are paid at Montvale, NJ 07645 and additional
mailing offices. Postmaster: Send address changes to: JDJ, SYS-CON
Publications, Inc., 135 Chestnut Ridge Road, Montvale, NJ 07645.

FROM THE GROUP PUBLISHER

Wanted: 19 More of the Top
Software People in the World
by Jeremy Geelan.................................6
VIEWPOINT

The Evolution of Web Application
Technologies for Java
by Craig R. McClanahan.................................8
JAVA ENTERPRISE VIEWPOINT

Interviewing Enterprise
Java Developers
by Yakov Fain.................................10
COMMUNICATIONS

JAIN/SLEE
Opening the telecommunications world for Java
by Sven Haiges.................................12
JDBC

Connecting the Java World
to Grid-Enabled Databases
Consolidate IT resources and optimize usage
by Kuassi Mensah.................................26

DESKTOP JAVA VIEWPOINT

Turkish Java Needs Special
Brewing
by Joe Winchester.................................50

LABS

JDeveloper 10g
by Oracle Corporation
Reviewed by Alain Trottier.................................58

JSR WATCH

From Within the Java Community
Process Program
Updating the first JSR
by Onno Kluyt.................................60

@ THE BACK PAGE

One Man’s Open Source,
Another Man’s Asset
by Henry Roswell.................................62

CORE AND INTERNALS VIEWPOINT

Three Gems from JavaOne
by Calvin Austin.................................34

SOLUTIONS

Java GoF Creational
Design Patterns
For cleaner development and
easier maintenance
by Puneet Sangal.................................36

SMART CARDS

Writing Java Card Applications
Writing applications for the smallest JVM
by Vijay Phagura and Anita Phagura.................................40

FIRST LOOK

Building Applications with
Berkeley DB Java Edition
High-performance database goes pure Java
by Jim Menard.................................46

Feature

Beyond Entity Objects
by Bill Kohl

20

by Michael Jacobs

www.SYS-CON.com/JDJ6 September 2004

or over a decade, Tim Bray, one of
the prime movers of XML, man-
aged the Oxford English Dictionary
project at the University of Waterloo.

That was from 1988 to 1999. During the
end of his time there he launched one of
the first public Web search engines (in
1995), coinvented XML 1.0, and coedited
“Namespaces in XML” (1996–1999).
 Bray is therefore no technological
slouchabout. Nor is he without deep
insight into the ways of the Web, having
served as a Tim Berners-Lee appointee on
the W3C Technical Architecture Group in
2002–2004, after which he joined Sun as
director of Web technologies in March of
this year. So when he takes the trouble to
describe someone as “probably one of the
top 20 software people in the world,” you
know he means it.
 The person in question was Adam
Bosworth, famous for Quattro Pro, Micro-
soft Access, and Internet Explorer 4 even
before he joined BEA as VP of engineering
in 2001, when BEA bought Crossgain, the
company he’d by then cofounded after
leaving Microsoft. He went on to become
BEA’s chief architect before, very recently,
leaving the Java app server company to
join Google, Inc.
 Bray was one of the gurus that a
headhunter working with Google, Inc.,
called for a reference before they hired
Bosworth. Bray gave him a glowing
one. That’s when Bray’s description
of him as probably one of the top 20
software people on earth appeared. As
we all know, Bosworth got the job
and now works on software that is
very different from what he was archi-
tecting at BEA.
 “Rather than worrying about what the
IT of large corporations needs to do to
support the corporation,” he explained
recently, “I’m worrying about mere mor-
tals. In fact, my mom.”
 Bosworth says he can only build soft-
ware if he first gets some mental image in
his head of the customers. Who are they?
How do they look, feel, think? He calls this
“designing by guilt,” which he explains
as follows: “Because if you don’t do what

feels right for these customers, you feel
guilty for having let them down.”
 Of course, customers are endlessly
disparate, complex, heterogenous, and
distinct. But even so, Bosworth says he
has always found it necessary to think
about a small number of distinct types
of customers, and then design for them.
“And boy is it satisfying to do this when
the people you are designing for are your
friends, family, relatives, your smart-aleck
son, and so on,” Bosworth observes, “and
when even your mother can use what you
build – I call this the mom factor. It’s corny
but fun.”
 What a refreshing approach. No won-
der, with this high regard for technology’s
fundamentals, Bray rates Bosworth as one
of the top 20 software people in the world.
The question naturally arises, however:
who are the other 19?
 This is not easy to answer, and not
because there are too few candidates but
because there are too many. In a phase of
the economic cycle most readily remem-
bered for being downbeat and understat-
ed, the names of leading i-technologists
– whom Internet technologies rely on for
their unceasing innovation and ingenuity
– nonetheless still trip off most people’s
lips. Just think of Sergey Brin, Bill Jay, Linus
Torvalds, Tim Berners-Lee, James Gosling,
Anders Hejlsberg, Don Box, Nathan
Myhrvold, W. Daniel Hillis, Mitch Kapor…
 The “technorati” or “digerati” – call
them what you will – the aristocracy of
the online world. Can a list of the Top 20
i-Technologists possibly be compiled that
doesn’t cause the online equivalent of
fistfights when published? Obviously not.
But that shouldn’t deter us from trying.
So, have at it. The final list will be reported
here, along with the near-misses. You can
send your nominations, including your
reasoning, to i-Technology’s Top Twenty,
toptwenty@sys-con.com. It will take more
than a month to ensure that everyone
with something worth saying has found
time, energy, and above all the appropri-
ately persuasive argument to persuade us
of the merits of their choice/s. We’ll report
next issue on how this process is going.

J2
SE

H
O

M
E

J2
E

E
J2

M
E

From the Group Publisher

Jeremy Geelan

Wanted: 19 More of the
Top Software People in
the World

F

Jeremy Geelan is

group publisher of

SYS-CON Media, and

is responsible for the

development of new

titles and technology

portals for the

firm. He regularly

represents SYS-CON at

conferences and trade

shows, speaking to

technology audiences

both in North America

and overseas.

jeremy@sys-con.com

 Editorial Board
 Desktop Java Editor: Joe Winchester
 Core and Internals Editor: Calvin Austin
 Contributing Editor: Ajit Sagar
 Contributing Editor: Yakov Fain
 Contributing Editor: Bill Roth
 Contributing Editor: Bill Dudney
 Contributing Editor: Michael Yuan
 Founding Editor: Sean Rhody

Production
 Production Consultant: Jim Morgan
 Associate Art Director: Tami Beatty–Lima
 Executive Editor: Nancy Valentine
 Associate Editors: Jamie Matusow
 Gail Schultz
 Assistant Editor: Torrey Gaver
 Online Editor: Martin Wezdecki
 Research Editor: Bahadir Karuv, PhD

Writers in This Issue
Calvin Austin, Yakov Fain, Jeremy Geelan,

Sven Haiges, Mike Jacobs, Onno Kluyt, Michael Havey,
Pramod Jain, Yayati Kasralikar, William Kohl,

Craig R. McClanahan, Jim Menard, Kuassi Mensah,
Anita Phagura, Vijay Phagura, Henry Roswell,
Puneet Sangal, Alain Trottier, Joe Winchester

To submit a proposal for an article, go to
http://grids.sys-con.com/proposal

Subscriptions
For subscriptions and requests for bulk orders, please send your

letters to Subscription Department:

888 303-5282
201 802-3012

 subscribe@sys-con.com

Cover Price: $5.99/issue. Domestic: $69.99/yr. (12 Issues)
Canada/Mexico: $99.99/yr. Overseas: $99.99/yr. (U.S. Banks or

Money Orders) Back Issues: $10/ea. International $15/ea.

Editorial Offices
SYS-CON Media, 135 Chestnut Ridge Rd., Montvale, NJ 07645

Telephone: 201 802-3000 Fax: 201 782-9638

Java Developer’s Journal (ISSN#1087-6944) is published monthly

(12 times a year) for $69.99 by SYS-CON Publications, Inc., 135
Chestnut Ridge Road, Montvale, NJ 07645. Periodicals postage

rates are paid at Montvale, NJ 07645 and additional mailing
offices. Postmaster: Send address changes to: Java Developer’s
Journal, SYS-CON Publications, Inc., 135 Chestnut Ridge Road,

Montvale, NJ 07645.

Worldwide Newsstand Distribution
Curtis Circulation Company, New Milford, NJ

For List Rental Information:
Kevin Collopy: 845 731-2684, kevin.collopy@edithroman.com
Frank Cipolla: 845 731-3832, frank.cipolla@epostdirect.com

Newsstand Distribution Consultant
Brian J. Gregory/Gregory Associates/W.R.D.S.

732 607-9941, BJGAssociates@cs.com

©Copyright
Copyright © 2004 by SYS-CON Publications, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including

photocopy or any information storage and retrieval system, without
written permission. For promotional reprints, contact reprint

coordinator Kristin Kuhnle, kristin@sys-con.com. SYS-CON Media and
SYS-CON Publications, Inc., reserve the right to revise, republish and

authorize its readers to use the articles submitted for publication.

 Java and Java-based marks are trademarks or registered
trademarks of Sun Microsystems, Inc., in the United States and
other countries. SYS-CON Publications, Inc., is independent of
Sun Microsystems, Inc. All brand and product names used on
these pages are trade names, service marks or trademarks of

their respective companies.

Try a better database. For free.
Download a free, fully-functional, non-expiring version of Caché or request it on CD at www.InterSystems.com/match1

© 2004 InterSystems Corporation. All rights reserved. InterSystems Caché is a registered trademark of InterSystems Corporation. 704

Relational
database

Object-oriented
development

TIME TO CHANGE
YOUR DATABASE

are massively scalable and lightning fast. They
require little or no database administration. And
Caché’s powerful Web application development
environment dramatically reduces the time to
build and modify applications.

We are InterSystems, a specialist in data
management technology for over twenty-six
years. We provide 24x7 support to four million
users in 88 countries. Caché powers enterprise
applications in healthcare, financial services,
government, and many other sectors. Caché is
available for Windows, OpenVMS, Linux, and
major UNIX platforms – and it is deployed on
systems ranging from two to over 10,000
simultaneous users.

If your back-end database isn't a good match
for your front-end development, you need a new
database.

Caché, the post-relational database from
InterSystems, combines high-performance SQL
for faster queries and an advanced object database
for rapidly storing and accessing objects. With
Caché, no mapping is required between object
and relational views of data. Every Caché class can
be automatically projected as Java classes or EJB
components with bean-managed persistence. Plus,
every object class is instantly accessible as tables
via ODBC and JDBC.

That means huge savings in both development
and processing time. Applications built on Caché

Mismatch3 traccar JavaDevJour 7/13/04 6:42 PM Page 1

www.SYS-CON.com/JDJ8 September 2004

ne of the primary values of
the Java platform has been the
concept of “write once, run any-
where.” A key factor in achiev-

ing this goal has been the fact that Java,
as a platform, has focused on defining
standardized API specifications, which
can be implemented by multiple provid-
ers who can compete on features and
performance. For the application devel-
oper, the key benefit is portability across
these implementations, avoiding vendor
lock-in – as long as the standardized APIs
are of sufficient power and usability to
allow developers to create applications
based on the standards, without having
to rely on vendor extensions.
 The servlet API was the first “exten-
sion” API to be standardized. Its mission
was to encapsulate the HTTP protocol
in an object-oriented style accessible
to Java developers, with added features
that help maintain state across HTTP
requests. The original design has proven
to be remarkably resilient, with subse-
quent versions focusing on packaging
(Web application archives), filters (chain
of responsibility pattern), and event
handling.
 Servlets, however, are primarily at-
tractive to developers who understand
Java. In addition, Web applications built
directly on top of the servlet API tended
to intermix presentation logic – the gen-
eration of the HTML markup – with busi-
ness logic, leading to applications that
were difficult to maintain and enhance.
 The first issue was addressed by the
development of JavaServer Pages (JSP)
technology. Instead of embedding
HTML generation inside a Java servlet,
JSP pages turn the servlet inside out
– the source code for a JSP is primarily
HTML markup, with special markup ele-
ments (in JSP, known as custom tag han-
dlers) used to insert dynamic content.
Dealing with the second issue, however,
has led to a plethora of innovative ap-
proaches to the overall architecture of a
Web application.
 One particular design pattern – the
Model-View-Controller (MVC) pattern

adapted from rich-client architectures
– has proven particularly useful. The
most popular implementation has been
the Apache Struts Framework, an open
source Web application framework that
implements this design. It enables a
separation of concerns between pre-
sentation logic and business logic, while
providing useful additional functionality.
The result has been its adoption as a de
facto standard by nearly every major
tool that supports Java Web application
development.
 While Struts has become the epitome
of the overall architecture for Web appli-
cations, it does not include sophisticated
components for the development of
sophisticated user interfaces. The recent
release of version 1.0 of the JavaServer
Faces specification has addressed the
need for standardized fundamental
APIs for components, which will lead
to the development of robust tools and
interoperable component libraries.
 What happens to a de facto standard
when a portion of its functionality
is later standardized? It depends on
whether the existing technology em-
braces or ignores the newcomer. In the
case of Struts, we’ll see an embracing of
JavaServer Faces just as it embraced the
JSP Standard Tag Library (JSTL) earlier.
An integration library, already available
as nightly builds, allows you to migrate
an existing application, one page at a
time, to use JavaServer Faces compo-
nents in the presentation tier – without
changing the business logic embedded
in actions. In other words, the separation
of concerns provided by the framework
really works.
 I have enjoyed my personal participa-
tion in the evolution of the Web tier APIs
in Java. My initial participation was in
an open source implementation of the
servlet API, which became Tomcat. I was
the initial creator of the Struts frame-
work, and co-spec lead for version 1.0
of JavaServer Faces. In my current role
(architect on the team building Sun Java
Studio Creator), I can assure you that my
contributions will continue to be felt.

J2
SE

H
O

M
E

J2
E

E
J2

M
E

Viewpoint

Craig R. McClanahan

The Evolution of
Web Application
Technologies for Java

O

Craig McClanahan is a

senior staff engineer at

Sun Microsystems,

Incorporated. Presently, he

is an architect on the

team building Sun Java

Studio Creator, a GUI

development tool for

building Web applications.

Previously, he was the

original architect of the

servlet container inside

Tomcat 4.x and 5.x,

principal author of the

Struts Framework, and

co-Specification Lead for

JavaServer Faces 1.0.

craig.mcclanahan@sun.com

President and CEO:
 Fuat Kircaali fuat@sys-con.com

Vice President, Business Development:
 Grisha Davida grisha@sys-con.com

Group Publisher:
 Jeremy Geelan jeremy@sys-con.com

Advertising
Senior Vice President, Sales and Marketing:

 Carmen Gonzalez carmen@sys-con.com
Vice President, Sales and Marketing:

 Miles Silverman miles@sys-con.com
Advertising Sales Director:

 Robyn Forma robyn@sys-con.com
Director, Sales and Marketing:

 Megan Mussa megan@sys-con.com
Associate Sales Managers:

 Kristin Kuhnle kristin@sys-con.com
 Beth Jones beth@sys-con.com
 Dorothy Gil dorothy@sys-con.com

Editorial
Executive Editor:

 Nancy Valentine nancy@sys-con.com
Associate Editors:

 Jamie Matusow jamie@sys-con.com
 Gail Schultz gail@sys-con.com

Assistant Editor:
 Torrey Gaver torrey@sys-con.com

Online Editor:
 Martin Wezdecki martin@sys-con.com

Production
Production Consultant:

 Jim Morgan jim@sys-con.com
Lead Designer:

 Tami Beatty-Lima tami@sys-con.com
Art Director:

 Alex Botero alex@sys-con.com
Associate Art Directors:

 Louis F. Cuffari louis@sys-con.com
 Richard Silverberg richards@sys-con.com

Assistant Art Director:
 Andrea Boden andrea@sys-con.com

Web Services
Vice President, Information Systems:

 Robert Diamond robert@sys-con.com
Web Designers:

 Stephen Kilmurray stephen@sys-con.com
 Matthew Pollotta matthew@sys-con.com

Accounting
Financial Analyst:

 Joan LaRose joan@sys-con.com
Accounts Payable:

 Betty White betty@sys-con.com
Account Receivable:

 Shannon Rymza shannon@sys-con.com

SYS-CON Events
President, SYS-CON Events:

 Grisha Davida grisha@sys-con.com
National Sales Manager:

 Jim Hanchrow jimh@sys-con.com

Customer Relations
Circulation Service Coordinators:

 Edna Earle Russell edna@sys-con.com
 Linda Lipton linda@sys-con.com

JDJ Store Manager:
 Brunilda Staropoli bruni@sys-con.com

www.SYS-CON.com/JDJ10 September 2004

oday’s Java job market is
healthy. Major online job
search engines show thousands
of openings, and people are

competing for these jobs. Skilled Java
developers are just as popular as
Visual Basic or PowerBuilder devel-
opers were back in 1996. There is a
major difference though – back then,
client/server developers could make a
decent living by mastering one front-
end tool and any major relational
DBMS. These days a Java developer
has to know about 10 different tools
or technologies to find a good job and
feel relatively secure for a couple of
years.
 During the last year I’ve been
interviewing lots of J2EE developers,
who are in demand again. But over the
last several years job requirements,
people, and résumés of Java develop-
ers have changed quite a bit and this is
what I’ve noticed:
• People do not call themselves

Java developers or programmer-
analysts anymore – most of them
prefer the title of Java architect.
Unfortunately, only some of them
really understand how J2EE com-
ponents operate and can suggest
some design solutions.

• Job applicants are more senior and
I barely see any college graduates or
junior programmers in the market.
Many of the junior positions are
being outsourced and the number
of graduates with computer science
degrees has declined over the past
several years.

• Java certification does not make
your résumé stand out. Actually, if
a résumé starts with a list of Java
certifications, most likely it’s a
beginner. I’m not against certifica-
tion as it helps you learn the lan-
guage or a tool, and shows that you
are willing and can study. But the
fact that you have a Java certificate
doesn’t mean that you’re a skilled
professional.

• Three to four years ago people
with EJB experience were in high
demand; now Struts is a more
valuable asset. This is a good
framework for Web applications,
but it has the following side effect:
some Struts developers don’t
really know what’s under the
hood and how plain vanilla ser-
vlets work. When I ask how an
HTML form is being processed
by a servlet, they start from the
class Action.

• On a similar note, some people
don’t know exactly how JDBC works
– they just pass a SQL statement to
some wrapper class created by local
architects and get the result set
back.

• I see a new breed of Java architects
who used to be project managers.
These people usually know their
business really well, can talk about
application servers, messaging and
clusters, and capacity planning, but
often fall short on Java technical
questions.

• Job requirements are longer these
days and recruiting companies
don’t even want to submit your
résumé to the client if you have
“only” 9 out of 10 required skills. As
a matter of fact, recruiters screen
candidates a lot better now.

• Be prepared to pass at least four
interviews to get hired. While back
in 1999 two good interviews would
be enough, in 2001 it was very dif-
ficult to even get an interview let
alone a job!

 What does a good J2EE developer
have to know in addition to under-
standing the difference between
abstract classes and interfaces? Usu-
ally employers are looking for people
with at least 10 of the following skills:
Java servlets, JSP, Struts or a similar
framework, EJB, JMS, any commer-
cial message-oriented middleware,
JDBC, JNDI, HTML, XML, Ant, SQL,

one of the major application servers, a
couple of relational database manage-
ment systems, any UML modeling
tool, several design patterns (at least
a Singleton!), and familiarity with
Unix. Next year JavaServer Faces and
Hibernate will most likely be included
in this laundry list.
 Understanding why a particular
J2EE component is being used in your
project is equally important. If the
interviewer asks you, “Why did you
use EJB in this project?” please do
not answer, “This decision was made
before I joined the project.” Have your
own opinion and explain why you
think it was a good or bad choice for
this particular project.
 I keep hearing the “horror stories”
about questions some people get
during interviews. In my opinion, the
interviewers should ask more open-
ended questions about the applicant’s
prior experience, going into technical
details when appropriate. I don’t think
it’s fair to ask a person to write a Java
program processing a binary tree or
implementing a finite state machine.
These are the things that can be
looked up online or in the books when
needed.
 Good knowledge of the business
terminology of your potential em-
ployer is also important. I’m not
sure about the Silicon Valley or Eu-
rope, but here in New York just being
a techie may not be good enough to
get a senior job. For example, if
you’re applying for a Java position
in a financial brokerage company
and don’t know what a short sale is,
this may be a showstopper. If you
are a senior developer, you should
be able to hit the ground running…
Try to find out from your recruiter as
many details as possible about the
business of your potential employer,
do your homework, and you’ll get the
job! They are desperately looking for
good Java people and you can be one
of them.

Java Enterprise Viewpoint

Yakov Fain
Contributing Editor

Interviewing Enterprise
Java Developers

T

Yakov Fain works as a Java

architect for Bank of America in

New York City. He wrote

the book The Java Tutorial for
the Real World; an e-book Java
Programming for Kids, Parents
and Grandparents; and several

chapters for the book Java 2
Enterprise Edition 1.4 Bible. Ya-

kov holds a masters degree in

applied mathematics. For more

information please visit www.

smartdataprocessing.com.

yakovfain@sys-con.com

J2EE application problems can grind your business to a
screeching halt, devouring resources and devastating your
quality of service.

Why hunt and peck, trying to recreate the problem and
arguing about who’s to blame?

AppSight breaks through the wall between the place
problems are found and the place they’re solved, so your
team can pinpoint root causes faster than ever.

We’re talking user blunders, configuration problems,
performance issues, all the way down to code errors —

All without taking your application offline.

We have
a problem.

With AppSight,
it’s problem solved.

www.SYS-CON.com/JDJ12 September 2004

nother suitable title for this
article would be “EJB for
Communications.” The JAIN
APIs still play a minor role

on Sun’s Java Web site, but the JAIN
initiative is getting stronger. The JAIN
technologies (Java APIs for Integrated
Networks) have the potential to radi-
cally change the existing service archi-
tecture for communications service
providers.
 Following the link “Other Java
Technologies/JAIN APIs” from Sun’s
Java Web site, you’ll probably find
your way to a completely unknown
world: Java technologies for tele-
communication products and
services. This article introduces
you to the basics of JAIN and
then explores JAIN/SLEE in
greater detail. By the way, SLEE
means Service Logic Execution
environment and is abbreviated
to JAIN/SLEE or JSLEE.

Motivation
 The service architectures of
many telecommunications service
providers have become a lot more
complex over the past few years.
This is because many providers
merged, or new technologies like
GPRS or W-CDMA were or will be
introduced. These architectures
can be described as highly vertically
integrated and heterogeneous. They
miss common interfaces, based on
standards. Instead, most architectures
are quite proprietary. This makes
it hard to introduce new services
because the complexity of the overall
architecture is augmented with each
new feature that is added to the
communications network. Services
like the Multimedia Messaging
Service (MMS) were introduced last
year and again new protocols and

new network elements had to be
integrated with the existing networks.
Managing the communications net-
work as a whole is getting harder and
harder.
 The JAIN initiative tries to break
these vertical structures and replace
them with horizontal ones. Propri-
etary interfaces between the network
components are replaced with stan-

dards-based interfaces. The

JAIN APIs are specified using the Java
Community Process, which allows
everybody to contribute to the
specifications. These companies
include IBM, Motorola, NTT, and
Vodafone.

JAIN and Other Java Technologies
 As JAIN is a new Java technology
for most developers, it’s interesting to
explore how it relates to other existing
Java technologies such as the Java 2
Micro Edition (J2ME), the Standard
Edition (J2SE), or the Enterprise Edi-
tion (J2EE).
 Java technologies can be divided
into server-side and client-side tech-
nologies (see Figure 1). J2SE and J2ME

target the client side. While J2ME tar-
gets mobile and resource-constrained
devices, J2SE targets standard desktop
systems.
 On the server side, J2EE technolo-
gies target enterprise systems and
JAIN technologies target communica-
tions systems. Based on the JAIN
and J2EE specifications, communica-
tions services running in a SLEE
may communicate directly with
existing enterprise systems using
RMI or any other protocol that the
J2EE server exposes. In contrast, if
an enterprise service needs to trigger
some functionality exposed by a tele-

communications service, it needs
to communicate with a SLEE’s
resource adapter. The resource
adapter then maps the requests
into SLEE events and routes these
events to the services.

 Applications running on a
mobile device need not necessar-

ily use J2ME to access functionality
provided by a server. For example,
for MMS, the MMS User Agent on the
client device is typically not imple-
mented in Java.
 Let’s compare this to a desktop
system. A client Web browser can also
be implemented in any programming
language. It will be compatible with
the services offered on the server, as
long as the protocols such as HTTP
are supported.
 Unlike J2SE, J2ME does not provide
the functionality to connect directly
to EJBs. This is because RMI is not
supported on resource-constrained
mobile devices. To exchange informa-
tion with external systems, mobile de-
vices supporting J2ME may use HTTP
connections.

The JAIN APIs
 There are currently 36 entries for JAIN

Communications

by Sven HaigesJAIN/SLEE

A

Sven Haiges is studying

computer science and

economics at the University

of Applied Sciences in

Furtwangen, Germany.

He obtained his MBA from

 SFU in Vancouver, Canada, and

is currently writing his thesis

for his German studies

about JAIN/SLEE in Munich,

Germany. Besides mobile

 Java technologies and

communications, he specialized

in Web Frameworks such as

Struts and JavaServer Faces.

He is the author of two books

about these frameworks and has

published articles in JDJ and the

German Java Magazin.

sven.haiges@flavor.de

Opening the telecommunications world for Java

Co
py

ri
gh

t
©

 2
00

4
Ca

no
o

En
gi

ne
er

in
g

AG
. A

ll
R

ig
ht

s
Re

se
rv

ed
.

Ja
va

 a
nd

 a
ll

Ja
va

-b
as

ed
 t

ra
de

m
ar

ks
 a

re
 r

eg
is

te
re

d
tr

ad
em

ar
ks

 o
f S

un
 M

ic
ro

sy
st

em
s,

 In
c.

Rich Thin Clients for J2EE

Canoo Engineering AG http://www.canoo.com/ulc/

D o w n l o a d y o u r f r e e t r i a l t o d a y !

� S e r v e r- s i d e p r o g r a m m i n g m o d e l :
develop scalable web applications for thousands of users
as simply as stand-alone Swing applications.

� S u p e r i o r s e c u r i t y :
no application code is executed on the client, nothing
is stored in a browser cache.

� A p p l i c a t i o n d e p l o y m e n t o n s e r v e r :
a lean Java presentation engine on the client serves
any number of applications.

� P u r e J a v a l i b r a r y :
use your favorite IDE and get add-on tools for visual editing,
client/server simulation, and load/performance testing.

UltraLightClient offers
a server-side API to Swing,
providing rich GUIs
for J2EE applications.

www.SYS-CON.com/JDJ14 September 2004

technologies on the JCP Web site. This
number is more than we can cover in
this short article, but we will categorize
those specifications in general and then
focus on the JAIN/SLEE specification.
 JAIN technology enables the integra-
tion of Internet and Intelligent Network
(IN) protocols, which are referred to as
Integrated Networks. JAIN APIs can be
divided into Java application interfaces
and Java application containers. Table
1 provides an overview of some related
JAIN technologies.
 The Java application interfaces for
communications map the telecom-
munication protocols for the Java
programming language. In contrast, the
Java application containers for commu-
nications provide a standard execution
environment for telecommunication
services. These services typically use

the Java application interfaces for com-
munications via resource adapters.
 Intelligent Networks are used in tele-
communications systems. For example,
call management for voice is done
via the SS7 protocol. An intelligent
network is also a service-independent
network. The intelligence is not in the
switch that connects to calling partners
but in an external computer node,

which may be distributed throughout
the entire network. Because of this,
Intelligent Networks allow a fast and
efficient development of new services.
 A protocol that’s currently popular
is SIP because it enables VoIP gate-
ways; right now we can see that VoIP
is beginning to change the telecom-
munications landscape radically. To
talk “SIP,” JAIN offers you the JAIN
SIP 1.1 APIs as part of the Java APIs
for Communications. SIP is an IETF
protocol for IP-based communication.
Using SIP, you can build your own SIP
services like a SIP gateway, which is
needed to create and manage the
connections.
 The Java Application Containers
for Communications include only
two specifications: SIP servlets and
JAIN/SLEE. SIP servlets provide sup-

port for SIP based on the well-known
Java servlets standard. The JAIN/SLEE
technology is a container for telecom-
munications services and provides
a common runtime environment
for those services. The specification
went final in March 2004 and can be
downloaded from the JCP home page
together with the reference implemen-
tation and the TCK.

Why We Need a New Technology…
 Communications systems are typical-
ly event-driven, asynchronous systems.
In contrast, enterprise systems typically
use direct method invocations. An exist-
ing enterprise architecture is defined by
the Enterprise JavaBeans specification.
The SLEE specification specifies an
asynchronous, event-driven com-
munications architecture that targets
communications systems specifically.
Table 2 provides a high-level overview of
the different requirements of enterprise
and communications systems.
 As shown in Table 2, there are sub-
stantial differences between commu-
nications and enterprise systems. The
EJB specification meets the require-
ments of enterprise systems. The SLEE
now meets the requirements of today’s
communication systems.

 Although existing J2EE containers
also support asynchronous event pro-
cessing (JMS), these containers were
not designed for it. A SLEE, on the oth-
er hand, was specifically designed for
high-frequency telecommunications
systems and is completely asynchro-
nous. Thus, a SLEE fulfills the require-
ments of communications systems far
better than any implementation on top
of an EJB container.

Service Logic Execution Environment
 The Service Logic Execution En-
vironment (SLEE) API Specification
defines an application framework
for the development of portable
telecommunication services. It was
specified under the Java Community
Process (JCP) as Java Specification
Request (JSR) 22. The final approval
ballot accepted the specification on
February 17, 2004, and it went final.
The specification is led by David
Ferry from Open Cloud and Swee Lim
from Sun Microsystems. In addition
to the companies that the specifica-
tion leads belong to, the expert group
for this JSR includes companies like
Siemens AG, IBM, Motorola, and NTT
Corporation. Figure 1 Client and server technologies

J2ME

J2SE

MIDP

WMA

SIP for
J2ME

other
API> JAIN

other
APIs

Web
Start

Swing

J2EE

SIP EJB XYZ

M
M

1

RA RA RA

SLEE

SBB SBB SBB

WS Other
Connector Connector

J2EE

EJB EJB EJB

Se
rv

le
t

Mobile

Desktop

RA

Wireless Network
MMIHTTP

HTTP
XHTM

L

HTML

HTTP

SOAP
HTTP

HTTP

RM
I

Client
Technologies

Server
Technologies

The service architectures of many telecommunications service
providers have become a lot more complex over the past few years”“

Communications

www.SYS-CON.com/JDJ16 September 2004

 The SLEE reference implementa-
tion was built by Open Cloud, New
Zealand. Open Cloud also created the
reference implementation for JSLEE
and sells an implementation of the
SLEE that’s not built on top of the EJB
architecture (as the reference imple-
mentation is). Their product is called
Open Cloud Rhino.
 The four basic elements of the SLEE
are resource adapters, events, activity
contexts, and the runtime environ-
ment, which hosts the SBB Objects.
Figure 2 shows the relationship be-
tween these elements.
 The resource adapters are respon-
sible for communicating with the
external network protocols. They
can send and receive events. Upon
receipt of an event generated in the
external network, they submit this
event to the activity context as event
objects. The SBB located within
the SLEE runtime environment has
interfaces to the activity contexts. The
activity contexts are used to deliver
these events to the SBBs. As resource
adapters can communicate bidirec-
tionally, they can also emit events to

the native protocol stack. Such events
could be fired by SBB objects running
within the SLEE that responds to
incoming requests.
 The activity context is a logical
entity within the SLEE that receives
and routes the events to the SBB
components. The routing is exactly
performed by the event router, which
is part of the SLEE. Events may be
duplicated and routed to several SBB
components.

Resource Adapters
 Resource adapters communicate
with external systems to the SLEE,
e.g., network devices, protocol stacks,
directories, or databases. According
to the SLEE architecture, a resource
adapter is a vendor-specific imple-
mentation of a resource adapter type.
An instance of a resource adapter
within the SLEE is called a resource
adapter entity.
 The resource adapter type declares
all event types that may be fired and
all activities that the adapter in-
troduces. When a resource adapter
passes an event to the SLEE, it must

provide the event object, the event
type, and an activity. The specification
does not state how this information
is passed to the SLEE. This API is up
to the implementor of the specifica-
tion. Because of this lack of clarity,
a new JSR that should clearly define
a Resource Adapter Framework was
introduced in March 2004.

Events
 Events objects carry information
from one entity within the SLEE to
another. Only SBB entities can both
consume and produce events, while
other entities such as resource adapt-
ers, the SLEE itself, and SLEE facilities
can only produce events.
 Each event is represented by an
event object (subclass of java.lang.Ob-
ject) and an event type. The event type
determines how the SLEE will route
the event, e.g., which SBB objects will
receive the event to their event han-
dling methods.
 For each event that an SBB fires, the
developer needs to specify an abstract
fire event method. This method
is implemented by the SLEE. SBB
entities receive events from attached
activity contexts. In case of an initial
event, the SLEE first creates an SBB
object and then routes the event to the
SBB.

Activity Context and Co
 The activity-related classes consist
of the two logical entities, activity and
activity context, and their Java object
representations, activity objects and
activity context interface object.
 An activity represents a related
stream of events. The Java representa-
tion of this logical entity is the activity
object, which is created by either
resource adapter entities or SLEE
facilities. An example of an activity
object is the JccCall Activity object. It’s
part of the Java Call Control APIs and
represents a phone call.
 An activity context represents the
underlying activity within the SLEE
and also holds shareable attributes
that SBB entities want to share. The
SBB objects can access the activity
contexts through the activity context
interface object.
 An SBB can either use the generic
activity context interface or extend
this interface and define additional

Communications

 Table 1 Some important JAIN APIs SOURCE: JAIN API SPECIFICATIONS, 2003

Java Application Interfaces Java Application Containers
 for communications
JAIN Session Initiation Protocol 1.1 JAIN Service Logic Execution Environment

JAIN Java Call Control 1.1 JAIN SIP Servlets

JAIN Presence
JAIN Instant Messaging

 Table 2 Requirement comparison of event-driven and enterprise systems SOURCE: [FERRY; PAGE; LIM; O'DOHERTY, 2003]

 Communications Enterprise
Invocations Mostly asynchronous, events Mostly synchronous:
 generated through protocol triggers databases, EAI systems

Event Granularity Fine-grained events and high frequency Course-grained and low-frequency

Components Lightweight components containing Heavyweight data access objects
 little business logic; rapid creation and that can have long persistent
 deletion lifetimes

Data Sources Multiple data sources (e.g., protocol- Database servers and back-end
 triggered events) systems

Transactions Lightweight transactions Database transactions

Computation Compute-intensive Database access–intensive

Availability 3 to 5 9s 2 to 3 9s

Real Time Soft real time -

Deployment Distributed throughout network Centralized in small number of
Distribution data centers

Nodes 1–4 CPUs 2–32 CPUs

Clusters 2–16 nodes 2–4 nodes

www.SYS-CON.com/JDJ18 September 2004

attributes that it wants to share with
other objects.
 The activity objects are typically
generated by network events. The re-
source adapters listen to these events
and create the appropriate activity
objects. These objects are placed in
the activity context of the SLEE. The
SLEE is now responsible for the deliv-
ery of the generated events to the SBB
objects. Vice versa, an SBB object can
access the activity context interface
to get access to the current activity
object, e.g., a JccCall Activity Object.
It can then fire events on this object,
which will be delivered back to the
resource adapters and to the underly-
ing network.
 To get access to an activity object,
the SBB developer typically accesses
the activity context interface, which is
automatically available within every
event handling method of the SBB
abstract class.

Runtime Environment and
SBB Abstract Class
 According to the specification, the
SLEE runtime environment must
make some APIs available to the SBB
components at runtime. Only a mini-
mal runtime environment is specified,
leaving it up to the implementor to
provide additional functionality.
 Currently, the SLEE must make

only the following APIs available
to instances of SBB components: Java
2 Platform, Standard Edition, v1.3
APIs; JNDI 1.2 Standard Extensions;
JSXP 1.0; and JDBC 2.0 Standard Ex-
tension (support for row sets only).
As in the Enterprise JavaBeans
Specification, the SLEE must not
allow components to access the
local file system. Yet, an SBB may
open a socket connection or queue
a print job.
 The SBB abstract class is part of the
SBB component (which also includes
the local interfaces and the SBB
deployment descriptor) and contains
the event-processing logic, which has
to be added by the SBB developer. The
SBB developer implements an SBB
abstract class for every SBB compo-
nent. The runtime environment is
responsible for creating the pooled
SBB instances from these abstract
classes. This process can be compared
to the creation of an EJB component.
As with EJB, the runtime environment
will be responsible for implementing
certain abstract methods and for cre-
ating instances that process incoming
events.
 Each SBB abstract class imple-
ments the javax.slee.Sbb interface and
must be defined public and abstract.
The concrete methods contain the
application logic of the component,

while the abstract methods deal with
firing events, container-managed
persistence (CMP), child relationship
management, profile CMP methods,
and accessing the specific activity
context. The abstract methods are
implemented by the SLEE. It uses
introspection and data from the
deployment descriptors to create this
specific code.

Conclusion
 The JAIN initiative certainly opens
the telecommunications world for the
Java programming language. Present-
ly, though, some APIs for telecommu-
nications APIs are still missing (e.g.,
MM1 for multimedia messaging),
which means that the developer has
to implement these APIs. Further, the
interfaces between these protocols
and the SLEE (resource adaptors) is
not yet specified in the current JSLEE
specification, which makes it almost
impossible for third-party resource
adapter vendors to enter the market
(and actually create one).
 Yet the JAIN Days held recently in
Munich at Sun Microsystems in Ger-
many allow a positive conclusion. An
active community is evolving, espe-
cially around SIP, and the mentioned
problems with the Resource Adapter
Framework were transformed into a
new JSR that should fix this problem.
International telecommunications
companies such as Vodafone and
NTT DoCoMo are watching carefully
and some have already been suc-
cessful with some JAIN/SLEE-based
service implementations.

Resources
• “JAIN and Java in Communications.”

Sun Microsystems. March 2004.
• JAIN API Specifications, 2003and

2004: http://java.sun.com/products/
jain/api_specs.html

• Ferry, D.; Page, D.; Lim, S.; and
O’Doherty, Phelim. 2003. “JAIN SLEE
Tutorial.” Sun Microsystems: http://
jainslee.org/downloads/jainslee-
tutorial-04.pdf

Communications

 Figure 2 The four basic elements of the SLEE

The JAIN initiative opens the telecommunications world
for the Java programming language”“

��
��

��
��

��
��

��
��

��
��

��
��

��
��

���
���

��
��

��
��

���
��

��

�
��

��
��

��

�
��

��
��

�

����������������������������������
������������������

Crystal Reports 10
�����������������

��������
������������������

��������
���������������

��������

Report Creation
Visual report designer for rapid data access and formatting • • •1 •1 • •
Customizable templates for faster, more consistent formatting • • • •
Repository for reuse of common report objects across multiple reports4 • • •
Data Access
PC -based and Microsoft® ODBC/OLE DB for MS Access and SQL Server • • • • • •
Enterprise database servers (ODBC, native) • •1 •1 • •
Custom, user -defined data through JavaBeans™ • • •
Custom, user-defined data through ADO and .NET • • •
Report Integration
Report viewing APIs (.NET and COM SDKs) • • •
Report viewing APIs (Java SDK) • • •
Extensive report viewer options (DHTML, ActiveX, Java Plug - in, and more) • •
APIs for run-time report creation and modification •
Report Parts for embedding report objects in wireless and portal apps • • • •
Report Deployment
Crystal Reports components for report viewing, printing, and exporting:
 a) Java reporting component • • •
 b) .NET reporting component • • •
 c) COM reporting component • •
Full featured report exporting • • •
Report server (Crystal Enterprise Embedded deployment license) •
1 Limited functionality. 2 Bundled with Microsoft® Visual Studio® .NET and Boland® C#Builder™.
3 Bundled with BEA WebLogic Workshop™ and Boland® JBuilder ®. 4 This feature is available on the Crystal Enterprise CD, included in the Crystal Reports 10 package.

We’d like to think that not all
perfect matches are made in heaven.

��
��

��
���

��
��

�
��

��
��

���
��

���
��

���
��

��
��

��
���

��
��

��
��

��
��

��
��

��
��

�
��

��
��

��
�

���
��

��
��

��
��

��
��

��
��

���
��

��
�

��
��

��
��

�
���

��
���

��
��

��
��

��
��

��
��

Perfect matches can be made here too. In order to quickly determine which Crystal Reports® best suits
your project requirements, we’ve provided this basic feature chart. Crystal Reports® 10 simplifies the
process of accessing, formatting, and tightly integrating data into Windows and web applications via
an enhanced designer, flexible data connectivity options, and rich Java™, .NET, and COM SDKs.

To learn more about Crystal Reports 10, compare over 150 different features across versions,
or to access technical resources like the Developer Zone and evaluation downloads, visit:
www.businessobjects.com/dev/p7. To ask more specific report project related questions, contact
an account manager directly at 1-888-333-6007.

www.SYS-CON.com/JDJ20 September 2004

 Thus in object-oriented programming we have the view that

computation is simulation.
—Timothy Budd

e have all read that objects are software repre-
sentations of real-world entities and that one
of the fi rst design tasks is identifying these
entities in our problem domains. These entities

then become classes of our applications. However, the ob-
ject-oriented paradigm allows us to model not only entity
objects, but any abstract concept for which behavior can
be identifi ed. This article explores how to logically model
abstract concepts with objects and why this will deliver
higher quality software that is more maintainable and
extendable.

Entity and Conceptual Objects
 According to Merriam-Webster, an entity is
“something that has separate and distinct
existence.” Grady Booch in his book Ob-
ject-Oriented Design refers to “a tangible
and/or visible thing.” Common entity ob-
jects in business applications are Custom-
er, Employee, PurchaseOrder, City, State,
etc. Common practice is that db tables are
represented as objects in the application
(if not directly in the application, then in
the translation layer between the applica-
tion and the db). All of these are entity ob-
jects. They have a real tangible existence in
the problem domain. Conceptual refers to
objects that represent ideas that have no
entity counterpart in the problem domain.
They may be identifi ed in the vocabulary of the problem
domain or they may appear only in the solution domain
as design contrivances for solving the problems at hand.
Validation, process, and builder are examples of conceptual
objects. Our desire is to separate the conceptual ideas from
the entities of the problem domain by objectifying them.

Creating Conceptual Objects
 The fi rst object-oriented programming (OOP) language

was Simula. As its name implies, Simula was used to
develop simulations of real-world systems. The idea was
to create software entities called objects that represent the
entities of a real system, program each object to simu-
late the actions of its real-world counterpart, and then,
through objects sending messages, let these objects inter-
act to simulate the real system. Simulating entities with
objects requires identifying the properties of the entity
and its interactions with other entities of the system. If we
were simulating a bowling ball, for example, it would have
weight, shape, diameter, and color properties. It has inter-
action with the bowler who bowls it, the lane upon which
it rolls, and the pins that it strikes. It would therefore
respond to the messages bowl (velocity, spin) sent by the
bowler, and roll (lane, time delta) and strike (angle) sent
by the lane.
 Simulating concepts works in a similar way. First
we identify the properties of the concept, then we identify
its responses to logical interactions with other objects.

A list, for example, has its elements as
properties. Its logical interactions would be
to answer queries about its size or one of
its elements, or add or remove an element.
For an integer, its property is its binary rep-
resentation inside the computer. Its logical
interactions are asking for its string repre-
sentation or to compare itself to another
integer object.

Concepts Become Objects
 Now we can say what the conditions are
for simulating abstract concepts. When I
talked about making lists and integers into
objects, I asked the following: What are the

properties and what are the logical requests (behaviors)
we could expect of a list or an integer? These are the
same questions we ask of any concept we wish to ob-
jectify. But these requirements, though simple, are too
restrictive; they can be refined further. Before doing so
let’s review encapsulation.
 Encapsulation hides data and implementation; it
does not hide the interface. Where does that leave us
with the required conditions for simulating concepts? It

Bill Kohl works as a

software architect for

a large petroleum industry

corporation. He has worked

in software for more than

30 years, the last 15 of

those in the OO world.

His roles have included

OO instructor and mentor;

Smalltalk, C++, and Java

developer; and for the last six

years, software architect. He

has extensive experience in

developing object models for

enterprise applications.

william.kohl@
crosscountryenergy.com

by Bill Kohl

W

Beyond
 Entity Objects

Modeling concepts with objects

Feature

21September 2004www.SYS-CON.com/JDJ

means that the only requirement for simulation is that we
can identify logical requests (interface) that the concept
object should respond to. There do not need to be properties
for the object. Most objects do have properties, and we should
 still be asking the question: “What are the logical properties
of the concept we are simulating?” Now, however, the answer
may be none. An example would be a NetworkBuilder, an object
that implements the rules for creating a network. The rules are
pure logic and the NetworkBuilder object contains no properties.
All the data contained in the network is passed in as arguments;
the NetworkBuilder constructs the network and passes back a
Network object.

Cohesion, Coupling, and Encapsulating Change
 You’ve heard the dictum, “maximize cohesion, minimize cou-
pling” (Structured Design by Ed Yourdon and Larry Constantine).
These programming rules, originally formulated for structured
programming, are equally valid for OO programming. A lesser
known rule is to “encapsulate change” (Thinking in Java by Bruce
Eckel). That is to say, those areas of an application that are most
likely to change should be contained in as few objects as pos-
sible. Conceptual objects can help us accomplish both of these
goals. I always begin by asking the question, “What is most likely
to change in the application?” If it’s a business application the an-
swer will be business rules and business processes. Based upon the
rule to “encapsulate change,” I would like to encapsulate business
rules in one set of classes and business processes in another set.
This would encapsulate change and increase cohesion since rules
would have their own set of classes as would process. How do we
do this? Rules and process are both abstract concepts. How can we
create objects from them?
 We could first observe that many business rules are applied
by validating data entered into a system. The data may create
new entities – a new employee, for example; or couple existing
data – add Employee A to Dept. X. In either case, business
rules are applied through validation, so validation becomes
the concept we wish to objectify. Note that the examples I
used above form two distinct cases for validation. In the case
of validating a new employee, the data that creates the new
employee is cohesive, that is it’s all contained in one object, an
Employee object. Since the business rules associated with
creating this new object involve only that object, they may be
included with the behavior of the Employee class and we say that
an Employee is self-validating. In the case where Employee A is
added to Dept. X, the business rules involve at least two objects
and probably more. (A HumanResources object may also be in-
volved.) If the validation logic resides in the objects being
validated, they are coupled by the rule logic and, furthermore,
the rule itself is fragmented, parts of its logic lying in two or
more classes. The concept of validation can be used to create a
better situation here. The idea is to create a Validation class
(this will probably become a hierarchy in the application) that
encapsulates a business rule that would ordinarily be fragmented
across two or more objects. This provides cohesion for the rule
and decouples the objects involved in the rule.

Process Objects
 One interesting result of being able to simulate abstract concepts
with objects is process objects (as in a business process).
 A business process may generally be defined as anything a busi-
ness does that includes discrete events occurring over time. There is
an initial event of the process and all succeeding events are deter-
mined by the finishing condition of previous events. An event is a dis-
crete step in the process that can occur without interruption. When
we consider business processes, it’s common practice to have objects
collaborate to carry out this process. For complex processes this leads
to a network coupling between objects of the process and highly frag-
mented process logic. Each object of the process must know about
the next object of the process, thereby coupling the objects. If the
process logic changes, its multiple locations must be tracked down.
In this situation the concept of process leads to process objects that
contain the process logic, thus increasing the cohesion of the system.
Although the level of coupling has remained the same, coupling
through the process object is more desirable, allowing us to alter the
process, adding or deleting tasks without altering the entity objects
of the process.
 What are validation and process objects? How do we logically arrive
at their structure? We begin by asking the same questions we asked
in simulating lists and integers: What are the properties? What are the
behaviors? I will put off the properties question for now and answer

A business process may generally be defined as anything a business
does that includes discrete events occurring over time”“

 Figure 1 Order process with four objects

order
clerk

Parts
clerk

assembly
clerk

shipping
clerk

System Boundary

take order

OrderProcess

orderShipped
(products)

getParts
(parts list)

assembleParts
(parts)

shipOrder
(products)

 Figure 2 A process object

order
clerk

Parts
clerk

assembly
clerk

shipping
clerk

System Boundary

order

InitiateOrder

orderShipped
(products)

Order
Manager shipOrder(products)

assem
bleParts

(parts)ge
tP

ar
ts

(p
ar

tsL
ist

)

takeOrder

www.SYS-CON.com/JDJ22 September 2004

the behaviors question with an example, that of an order-
fulfillment process. In Figure 1 we see an order process that
includes four objects. Each of the objects participates in a part
of the process and knows which object follows it in the process
and what message to send to that object to continue the pro-
cess. These objects are coupled by the process logic and the
process logic is fragmented across these objects.
 Figure 2 shows the same process with a ProcessObject
coordinating the process. The objects involved in the
process still carry out the tasks that represent their part of
the process. However, they don’t have any knowledge of the
overall process.
 They don’t know what objects follow them or that they
are even a part of a process. The OrderProcess object knows
the entire process and is responsible for carrying it out.
Process logic is encapsulated in the OrderProcess object
and the four objects taking part in the process are decou-
pled with respect to the process. The OrderProcess object
represents the entire process, but has delegated individual
tasks to other objects.
 Figure 3 shows how the PartsClerk object may participate
in more than one process. It shows both the Order-Process
and a Financial object that is determining the value of a
company’s assets. These functionalities are orthogonal,
having only the collaboration with the PartsClerk object in
common. By encapsulating the logic of each process in one

object, the PartsClerk doesn’t need any knowledge of either
process and contains logic related only to its own purpose.
 The behavior of the OrderProcess object is the flow logic
of the process. In our OrderProcess example, when each step
of the process is completed, the OrderProcess object initiates
the following step, which constitutes the behavior of the
object. What are the properties of the OrderProcess object?
Does it have any data properties? It has a name as a possible
data property, but that’s contained in its class name. Since
it is conceptual and doesn’t represent any real-world entity,
it has no physical properties. Are there any data properties
required for its behavior? The answer is probably yes, but
if we take the simplest case it’s no. In the simplest case the
process could be “hard coded” with the logic (hardly ever
a good idea) and the OrderProcess would not require any
properties.
 Instead of hard coding the process, properties of the pro-
cess object could include a collection of process nodes, each
of which knows how to initiate and finalize its step of the pro-
cess. We would also include a DataDictionary to contain the
data required for completion of the process. In our example,
there would be four process nodes, one for each step (see Fig-
ure 4). When the process is initiated, it sends a “begin(this)”
message with itself as an argument to the TakeOrder process
node. The process node in turn notifies the OrderClerk object
to “takeOrder(this)”. When the order has been taken, the

Feature

 Figure 3 PartsClerk object participating in more than one process

AssetsValueProcess

Assets
Manager

Balance
Sheet

Finance
Manager

Parts
Clerk

Order
Clerk

Assembly
Clerk

Assembly
Clerk

Fleet
Manager

System Boundary

OrderProcess

order

Note that
PartsClerk takes

part in both processes.

corporateAssetsValue

orderShipped
(products)

assetsValue

assetsValue

as
se

tsV
alu

e
as

se
ts

Va
lu

e

getParts

(partsList)

takeOrder

initiateOrder

sh
ipO

rde
r

(pr
od

uc
ts)

Order
Manager

as
se

m
bl

eP
ar

ts
(p

ar
ts

)

www.SYS-CON.com/JDJ24 September 2004

OrderClerk notifies the TakeOrder node “orderComplete()”,
which in turn notifies the ProcessOrder. The ProcessOrder then
sends “begin(this)” to the next node, etc.
 All ProcessNodes implement a ProcessNodeInterface so that
adding a node to the process would simply require inserting
into the proper place in the node sequence. One property of
the ProcessOrder would be this collection of process nodes. In
addition we may wish to place some constraints on the process.
This would lead to properties such as beginTime, endTime, and
maxElapsedTime. If the process elapsed time exceeds the max-
ElapsedTime, the OrderProcess object would send notification
of this condition to the appropriate party. These self-timing
ideas would also apply to the process nodes. (You might already
be imagining some additional benefits of process objects. The
OrderProcess object could collect information about itself. This
could be used to determine how efficient the process is, allow-
ing us to improve the process over time.)
 For complex processes, the process object may contain as a
property a network that represents the process as task nodes
and the state conditions dictating the next task of the process.
This naturally leads to the idea of a subsystem of objects that
form a framework for creating process subsystems.
 What about the validation object? A validation object is
simpler than a process object because it represents a single
event. Its behavior is the application of the business rules via
its methods. Properties may or may not be present. In the ex-
ample above, a HumanResources object is required for the vali-
dation along with the employee and department objects. The
validation class containing this rule may maintain a reference
to a HumanResource object as a property. In general, validation
objects will not have properties.
 All of the data necessary to carry out a validation will be
passed in as arguments. For example, an employee has certain
information. The department may require that employees
have certain skills before they can work there. The HR depart-
ment would apply the process of validation by introducing
the employee to the department where the department could
interrogate the employee to determine if there is a match. Each
department may ask different questions or they may all ask the
same question and expect differ-ent answers; that information
behavior is delegated to the department. The supplied object
must conform to the Employee interface and, in doing so, de-
couples itself from the department. In turn, the department is
decoupled from the implementations of Employee so that new
types can be introduced with minimal effects on the code.

Conclusion
 Developing object-oriented applications is more than mod-
eling entities of the problem domain as objects. To achieve
the goal of creating maintainable and flexible apps, we need
to create objects from the abstract concepts of the domain
and solution spaces that complement the entity objects of the
domain. We find them in the vocabulary of domain experts, in

requirements, in use-cases, in applying patterns, and in our
own experience and knowledge shared by design experts. Our
goal is cohesive objects whose purpose in the application is
well defined. We strive for smaller objects that specialize. To
get there we create objects such as Validation and Process. By
objectifying these abstract concepts we increase the cohesion
and reduce the undesirable types of coupling from the appli-
cation. I’ve attempted to show how objects are created from
abstract concepts. This is the first step in being able to create
object-oriented applications that are composed of systems
of cohesive, purposeful objects whose interactions fulfill the
requirements.
 For other ideas of conceptual objects, let me recommend
the Wirfs-Brock reference below. Her “roles” should be helpful
to you in finding conceptual objects in your applications.

References
• Nygaard, K. “Early History of Simula,” (1978). History

of Programming Languages. Richard L. Wexelblat, ed.
Academic Press, 1981.

• Budd, T. (1997). An Introduction to Object-Oriented
Programming. Addison-Wesley.

• Wirfs-Brock, R. (2003). Object Design. Addison-Wesley.
• Yourdon, E., and Constantine, L. (1978). Structured Design.

Prentice Hall/Yourdon Press.
• Booch, G. (1991). Object-Oriented Design. Benjamin/

Cummings.
• Martin, R., published articles: www.objectmentor.com/

resources/articleIndex
• Next Step Object-Oriented Programming and the Objective

C Lan-guage, Addison-Wesley, 1993: www.toodarkpark.org/
computers/objc

• Merriam-Webster Online: www.webster.com
• Eckel, B. (2002). Thinking in Java, 3rd Edition. Prentice Hall

PTR: www.faqs.org/docs/think_java/TIJ3_t.htm

 Figure 4 Four process nodes

Assembly
Node

order
shipped

order

initiateProcess Order
Manager

execute(th
is)

completed(st
atus)

ex
ec

ut
e(

th
is)

co
m

pl
et

ed
(s

ta
tu

s) execute(this)
com

pleted(status)

execute(this)

completed(status)

Order
Node

ta
ke

Or
de

r(t
hi

s)

co
m

pl
et

ed
(s

ta
tu

s)

Parts
Node

co
m

pl
et

ed
(s

ta
tu

s)

ge
tP

ar
ts

(th
is

)

co
m

pl
et

ed
(s

ta
tu

s)

as
se

m
bl

eP
ar

ts
(th

is
)

Order
Clerk

Parts
Clerk

Assembly
Clerk

co
m

pl
et

ed
(s

ta
tu

s)

sh
ip

Or
de

r(t
hi

s)

Shipping
Clerk

Shipping
Node

Developing object-oriented applications is more than
modeling entities of the problem domain as objects”“

Feature

Finally there’s a high-performance database that loves Java just as
much as you do: Berkeley DB Java Edition (JE). Brought to you by the
makers of the ubiquitous Berkeley DB, Berkeley DB JE has been written
entirely in Java from the ground up and is tailor-made for today’s
demanding enterprise and service provider applications.

Berkeley DB JE has a unique architecture that’s built for speed. The software executes in the JVM of your application,
with no runtime data translation or mapping required. Plus Berkeley DB JE has been specifically designed to
handle highly concurrent transactions, comfortably managing gigabytes of data. And because it’s built in your
language of choice, your organization enjoys shorter development cycles and accelerated time-to-market.

Experience the outstanding performance of Berkeley DB JE for yourself.
Download Berkeley DB JE today at www.sleepycat.com/bdbje. Register now, and you’ll also receive a 15%
discount on a commercial license purchased before November 30, 2004.

Berkeley DB Java Edition
Download at www.sleepycat.com/bdbje

Introducing a high-performance database that’s 100% Java.

©
2

0
0

4
 S

L
E

E
P

Y
C

A
T

 S
O

F
T

W
A

R
E

 I
N

C
.

A
L

L
 R

IG
H

T
S

 R
E

S
E

R
V

E
D

.

Javavavoom!

www.SYS-CON.com/JDJ26 September 2004

rid computing is not necessar-
ily a new concept; however, its
adoption within the enterprise
has given birth to a new con-

cept called enterprise grid computing,
which is being embraced by the entire
IT industry. Enterprise grid comput-
ing aims to consolidate IT resources
– including both infrastructure software
and applications – and optimize their
usage, cutting costs substantially along
the way. Since Java and J2EE are widely
used as enterprise software platforms,
how do they align with this vision?
 This article outlines a set of chal-
lenges that JDBC faces as the database
connectivity layer within enterprise
grid environments and illustrates how
the Oracle Database 10g JDBC driver
addresses these challenges. First, I’ll
introduce the concept of enterprise grid
computing; then I’ll examine how Java
and J2EE operate in grid environments
and identify their database connectivity
requirements; and finally, I’ll discuss the
features of the Oracle Database 10g JDBC
driver that address those requirements.

Enterprise Grid Computing
 Commercial software vendors use
an assortment of terms, such as utility
computing, on-demand computing,
and autonomic computing, to describe
enterprise grid computing. Regardless
of which term is used, products that
support enterprise grid computing all
have the same set of common func-
tional denominators:
• Resource consolidation
• Resource virtualization
• Policy-based resource management
• Provisioning or allocation

 The chief aim of enterprise grid
computing, as noted above, is to help
enterprises consolidate IT resources
and optimize usage, reducing infra-

structure and labor costs. This is a
slight but important divergence from
the original concept of grid comput-
ing now classified as academic grid
computing, in which massive arrays of
computational power are constructed
from a network of many small and
widespread computers, and used to
perform large calculations and opera-
tions broken in autonomous chunks
that can’t be achieved even on today’s
largest supercomputers. A good exam-
ple of this is the SETI@home project.
 The convergence of recent hard-
ware and software advances has made
resource virtualization possible and
allowed the enterprise grid to be con-
structed. On the hardware side, these
advances include networked storage
devices (like storage grids) and low-cost,
modular hardware components (such
as blades); on the software side, they
include improvements in networking,
Web services, databases, application
servers, and management frameworks.
 Although no specific enterprise grid
computing standards have been estab-

lished, there is a general move toward
the concept of service-oriented archi-
tectures (SOA), which are based on and
make extensive use of existing Web
services standards and specifications.
SOA makes it possible to construct
architectures where client applications
can simply register, discover, and use
the services deployed over the grid.
This move is spearheaded by academic
and research proposals such as the
Open Grid Service Architecture (Global
Grid Forum) and middleware vendors
through participation in Web services
standards bodies. A new consortium,
Enterprise Grid Alliance, has been
formed with the goals of developing
enterprise grid solutions and accelerat-
ing the deployment of grid computing
in enterprises.
 Figure 1 illustrates a typical enter-
prise grid platform. While a complete
enterprise grid computing discussion
is beyond the scope of this article,
I hope I’ve given enough informa-
tion to encourage you to learn more
about it.

JDBC

by Kuassi Mensah

Connecting the Java World
to Grid-Enabled Databases

G

Kuassi Mensah is group

product manager within

the Java/J2EE and Web

services platform group

at Oracle. Mensah holds

an MS in computer sciences

from the Programming

Institute of the University

of Paris VI. He has published

several articles in Java, J2EE,

and Web services-focused

publications and is a frequent

speaker at industry events.

kuassi.mensah@oracle.com

Consolidate IT resources and optimize usage

 Figure 1 Enterprise grid

27September 2004www.SYS-CON.com/JDJ

Java and J2EE Containers in the
Enterprise Grid
 Very few enterprises run their busi-
ness with just stand-alone Java or J2EE
servers. Typical business applications
employ more complex architectures
consisting of load balancers, HTTP
listeners, Web caching servers, J2EE
containers, directory servers, resource
managers and monitors, and manage-
ment services.
 In recognition of this, vendors, such
as Oracle with its Oracle Application
Server 10g, are actively supplementing
their infrastructure with provisioning,
monitoring, registering, discovering, and
manageability mechanisms. This allows
them to be used in the more complex
system architectures required by mod-
ern SOA-based business applications.
 Similarly, the J2EE world, realizing
that it needs to broaden its support to
interoperate with other applications
and environments in a loosely coupled
manner, is aligning with enterprise grid
computing and SOA concepts. It’s do-
ing this by including core Web services
standards (such as SOAP, WSDL, UDDI,

and JAX-RPC) and numerous other Web
services specifications including WS-I,
WSIF, security, transaction, reliable mes-
saging, events, peer-discovery, policy,
orchestration, choreography, provision-
ing, and service-level agreement.
 In the scientific and research worlds,
the Globus Toolkit, from the Globus Al-
liance, is a reference implementation of
the Open Grid Services Infrastructure
(OGSI). OGSI lets Java components be
exposed as OGSI services. OGSA-DAIS
(Data Access and Integration) is an-
other scientific and research proposal
aimed at addressing data services
requirements in grid environments;
leading database vendors are partici-
pating in this initiative.
 Enterprise grid computing creates
an extremely dynamic environment
where resources are automatically
augmented or diminished based on
business priorities captured in alloca-
tion policies. The current version of the
JDBC specification (and implementa-
tions based on it) makes working in
such environments impractical and
reduces the ability of Java and J2EE ap-

plications to achieve all the benefits of
enterprise grid computing. To be more
explicit, let’s look at some of the issues
faced when working in an enterprise
grid computing environment:
• Most JDBC applications today use

connect strings that explicitly spec-
ify the hostname or IP address of
the target database. This won’t work
when processing nodes are dynami-
cally added to or retrenched from
the cluster of database servers.

• Enterprise grid environments must
scale well and serve thousands of
concurrent clients. This makes effi-
cient load-balancing and database
connection pooling mandatory; tra-
ditional connection pooling mecha-
nisms that cache only connections
with the same identity are useless.

• With databases and other resources
being dynamically managed and
allocated for service, connection
retention and management is criti-
cal. Mechanisms to resize or refresh
stale connections or to search for
and reclaim abandoned ones are
required.

Oracle Grid

Copyright © 2004, Oracle. All rights reserved. Oracle is a registered trademark of Oracle Corporation and/or its affiliates.

oracle.com/grid
or call 1.800.633.0753

It’s fast. . .
it’s cheap. . .

and it never breaks

turns 64 PC servers
into a giant mainframe

Client: Oracle Corporation Ad #: 0024

File Name: 205D0024.indd

Ad/Project Name: DB_Grid 64_US

Ad Headline: turns 64 PC servers

Produced by: Leo Burnett Chicago

Release Date: 8.20.04

Non Bleed:

Bleed: 8.625” x 5.5”

Trim: 8.375” x 5.375”

Live: 7.375” x 4.75”

Please examine materials carefully. For concerns, immediately contact Elise Garber at 312.220.4631.

www.SYS-CON.com/JDJ28 September 2004

JDBC

• Database clients, whether they’re
Java programs or J2EE containers,
must be notified about changes in
the database server configuration as
quickly as possible. Application serv-
ers (and J2EE containers) that rely
on unpredictable timeout mecha-
nisms will not be able to provide a
reliable, guaranteed service.

Java Database Connectivity Within
the Enterprise Grid
Virtualizing the Database as a Service
 As shown in Figure 1, clusters are
pervasive at every level within the
enterprise grid: disk and network storage
servers, database servers, and applica-
tion servers. Most database vendors now
allow a single database to be concur-
rently managed by multiple servers or
instances.
 Although database clusters are easily
understood, there are fundamental
differences between the architectures
supported by the various current
implementations; for example, a
shared nothing approach and a shared

disk approach provide different levels
of capabilities. This article focuses on
the Oracle Database Real Application
Cluster (RAC) model in which any
database server instance can address
the entire database space, hosted on
shared networked storage.
 The typical JDBC approach to speci-
fying how to connect to a database is to
provide the details for the target data-
base in the form of a tuple containing
<host>:<port>:<sid>. This is set as the
URL attribute of a data source definition
or directly in the connect string when
establishing the JDBC connection.

String connString="jdbc:oracle:

thin:@prodHost:1521:ORCL";

 In the Oracle Database RAC model,
the physical server hosts and database
instances that make up the cluster are
represented as a single logical entity
known as a service. A client application
connects to the logical database service
without any real knowledge of the actual
host or database server instance that’s

used in the cluster. By connecting to the
service, as illustrated by the Enterprise
Grid Model in Figure 2, and not to an
actual physical server, clients can be
insulated from changes made to the
physical elements of the cluster as well
as from node failures.
 To use a logical database entity in
Java applications, JDBC connection
strings must be able to accept service-
based connect strings instead of physi-
cal host details. In the Oracle Database
RAC model, services are represented as
“/<service-name>”.

String connString=”jdbc:oracle:

thin:@/service_name”;

The Connection Cache Manager
 In the enterprise grid world, where
applications are dynamically pro-
visioned to run on different servers
and even on instances of Java Virtual
Machines (JVMs), it’s imperative that
the application’s connection caches
can be managed to permit the most
efficient use of available resources. One
approach to this is a new component
called the Connection Cache Manager,
which offers a centralized way to man-
age one or more connection caches. A
single instance of Connection Cache
Manager per JVM manages all of the
connection caches used by applica-
tions running on that JVM.
 The Connection Cache Manager
plays two major roles: it manages
cache and binds a connection to the
data source.

Managing and Maintaining Cache
 The Connection Cache Manager is
responsible for creating the cache,
maintaining its state, and terminating
it. It’s aware of the existence of each
connection cache, managed indepen-
dently. A rich set of APIs is provided
to perform the Connection Cache
Manager tasks.
 The Connection Cache Manager
supports the coexistence of more than
one cache. Each cache is identified by a
unique name and is then tightly bound
to a data source. Each cache is either
created transparently when getConnec-
tion() requests are made on a cache-en-
abled data source, or is created explicitly
in the middle tier via the Connection
Cache Manager API. Once a cache is cre-
ated, it may either be explicitly removed Table 1 Comparing Oracle JDBC drivers

 Features Oracle9iR2 JDBC Oracle Database 10g
 Traditional Connection JDBC Implicit
 Cache Connection Cache

Transparent cache access No Yes

Refresh stale connections No Yes

Attributes-based connection retrieval No Yes

Reclaim and reuse abandoned connections No Yes

Cache heterogeneous pairs of user/password No Yes

Centralized cache management No Yes

 Figure 2 JDBC connections in a grid environment

29September 2004www.SYS-CON.com/JDJ

Oracle Database 10g

$149 Per User
First class database . . . economy price

Copyright © 2004, Oracle. All rights reserved. Oracle is a registered trademark of Oracle Corporation and/or its affiliates.

Terms, restrictions, and limitations apply. Standard Edition One is available with Named User Plus licensing at $149 per user with a minimum of five users or $4995 per processor. Licensing
of Oracle Standard Edition One is permitted only on servers that have a maximum capacity of 2 CPUs per server. 17 minute install is based upon testing on a system with 1x866MHz Intel

CPU, 512 Mb RAM running Red Hat Linux 2.1. Actual install times will vary and are dependent on system configurations. For more information, visit oracle.com/standardedition

 oracle.com/standardedition
 or call 1.800.633.0753

Client: Oracle Corporation Ad #: 0025

File Name: 205D0025.indd

Ad/Project Name: DB_149perUser_US

Ad Headline: $149 Per User

Produced by: Leo Burnett Chicago

Release Date: 8.20.04

Non Bleed:

Bleed: 8.625” x 5.5”

Trim: 8.375” x 5.375”

Live: 7.375” x 4.75”

Please examine materials carefully. For concerns, immediately contact Elise Garber at 312.220.4631.

via the Connection Cache Manager, or
when the data source is closed.
 Caches can be monitored using the
Cache Manager APIs, enabling access
to information such as the number
of connections checked out and the
number of connections available in the
cache.

Binding a Connection Cache to the Data Source
 As illustrated in Figure 3, the Con-
nection Cache Manager makes sure a
connection cache is associated with its
data source object every time a cache is
created, removed, or reinitialized. This
ensures an efficient way to access the
connection cache and retrieve connec-
tions from it every time the getCon-
nection() method is invoked on a data
source.

Fast Application Notification (FaN)
 As I alluded to earlier, the dynamic
nature of an enterprise grid environ-
ment results in nondeterministic
system changes that may have flow-
on effects on applications that are
executing.

 To allow application clients in an
enterprise grid environment to function
in the most efficient manner, a mecha-
nism must be provided that performs
the following tasks:
• Monitor changes in database con-

figuration and notify clients as fast
as possible.

• Balance connection requests across
all active instances.

• Fail-over established connections to
surviving instances

 Oracle Database 10g JDBC offers
these capabilities by combining the
Connection Cache Manager, Oracle
Database RAC, and notification events
through a notification service to
quickly inform affected components of
changes occurring in the grid.
 Let’s look at how these pieces work
together. When a new instance is
added to a database cluster, or when
an instance is retrenched from a cluster
(instance stopped or node dies), Oracle
Database RAC generates an event that
indicates what happened. The Oracle
Notification Service (ONS) detects and

distributes this event to components
that have registered as interested in
such events.
 In Oracle Database 10g JDBC, Fast
Application Notification is important:
the connection caches are alerted
when database instances are affected
and can take preventive courses of
action.
 The mechanism is enabled on a
cache-enabled data source by setting
the data source property FastCon-
nectionFailoverEnabled to true (see
Listing 1).
 With Fast Application Notifica-
tion, event detection and notification
is nearly instantaneous, occurring
in seconds rather than minutes with
traditional timeout mechanisms.

Adding Database Instances: Load Balancing
 Adding new database instances to an
Oracle Database RAC cluster generates
UP events. These automatically trigger
the balancing of all allocated connec-
tions over all active RAC instances with-
out waiting for application connection
retries/requests.

www.SYS-CON.com/JDJ30 September 2004

JDBC

 Let’s consider a basic example in
which we have:
• A cluster with two nodes in a data-

base service, one instance per node
• A cache size of 150 total connec-

tions, resulting in 75 connections
per instance

 Adding a new node to the service will
trigger an UP event, which is detected and
propagated via the FaN service. This will
cause the connection cache to automati-
cally rebalance the existing 150 connec-
tions in use in the cache over the three
instances, resulting in 50 connections
being established per database instance.
This process involves removing some
connections (to existing instances) and
creating new ones (to the new instance).

Retrenching Database Instances (or
Node Failure): High-Availability
 Retrenching database instances from
an Oracle Database RAC cluster gener-
ates DOWN events, which automatically
trigger a detect-and-fix mechanism in
the connection caches. This mechanism
quickly removes connections belonging
to the failed instance, preventing invalid
connections from being handed out on
connection request.
 Continuing with the previous example:
• We now have a three-node database

service with 50 connections per
instance in the caches, for a total of
150 connections.

 If a node in the database service fails
or is removed by the resource provi-
sioning system, then a DOWN event is
created and propagated via the FaN ser-
vice. The 50 connections belonging to
the failed instance/node will be quickly
removed from the cache, ensuring that
the cache is clean and consistent. A
clean cache guarantees that connection
requests will be routed only to surviving

instances. Clients with a stale connec-
tion must retry connection requests, un-
less a container intersperses such calls
and is able to take corrective action.
 The Fast Connection Fail-over mecha-
nism transparently ensures reliable,
highly available Java database connec-
tions in RAC and grid environments.

In-Flight Transactions
 If an application is midtransaction
when an instance fails, it will be thrown
an appropriate SQL exception and the
transaction will be rolled back. It’s the
responsibility of the application or
the container to retry the connection
request and reestablish session state.

Simplifying JDBC Connection Caching
 As summarized in Table 1, the new
Oracle Database10g JDBC Implicit
Connection Cache has been designed
to overcome existing JDBC Connection
Caching limitations as listed in Table 1,
by providing:
• Transparent access to the cache
• Support for multiple identities
• The ability to retrieve connections

based on user-defined attributes
and weights

• The ability to refresh or recycle
stale connections from the cache

 To take advantage of these capabilities,
simply customize your environment by
explicitly setting properties on the con-
nection cache properties or connection.

 Transparent Access to the Cache
 By default, the getConnection()
method in the standard OracleData-
Source API creates a new database
session and a physical database connec-
tion, thus incurring performance and
scalability penalties. With Implicit Con-
nection Caching, once the DataSource
property ConnectionCachingEnabled
has been set to true, the getConnec-
tion() method will service all connection
requests from the connection cache.

ods.setConnectionCachingEnabled(True);

ods.setConnectionCacheName(“MyCache”); //

optional

ods.setConnectionCacheProperties(cp); //

optional

ctx.bind(“MyDS”, ods);

ods =(OracleDataSource)

// lookup DataSource

ctx.lookup(“MyDS”);

 A JDBC 10g Connection cache can be
created either implicitly by the first in-
vocation of the getConnection() method
or explicitly by using the Connection
Cache Manager API. The Connection
Cache Manager is especially useful for
developers working with J2EE contain-
ers and ERP frameworks since it shields
the infrastructure from the complexity of
managing connection cache.

// This call would create a “MyCache” cache

and a

// connection from “MyDS”data source will

be created and returned

conn = ods.getConnection();

// This call would create a “MyCache” cache

and a

// connection to “MyDS”, authenticated by

“Scott” will be created

conn = ods.getConnection("SCOTT","TIGER");

 Subsequent getConnection() invoca-
tions will either create a new connection
(if the cache was not previously initialized)
or retrieve an existing connection from the
cache. Once the connection is retrieved,
you can proceed with statement creation.

 // Create a Statement

 Statement stmt = conn.createStatement ();

 …

 // Close the Statement

 stmt.close();

 stmt = null;

 The cache can be populated in one of
two ways: by preinitializing it using the
Cache Manager APIs or, incrementally,
upon the release of connection(s) back
to the cache. When returning a connec-
tion to the cache, applications can save
current connection attributes settings for
future use (see attribute-based retrieval,
below).

// return this connection to the cache

conn.close();

conn = null;

Caching Multiple Identities
 While a database does not impose
any specific restrictions on the con-
nection authentication, a traditional
cache might impose a limitation on the
connections it can manage, requiring
that they all use the same username/
password combination, for example. Figure 3 JDBC Connection Cache Manager

31September 2004www.SYS-CON.com/JDJ

Oracle Application Server

Copyright © 2004, Oracle. All rights reserved. Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

More Features at Half the Price

oracle.com/more
or call 1.800.633.0759

Oracle Application Server 10g is half the price of BEA WebLogic Platform 8.1.

Comparison is based on Oracle Application Server 10g Enterprise Edition with Oracle BPEL Process Manager Option and
Oracle Developer Suite 10g vs. BEA WebLogic Platform 8.1. Pricing refl ects usage for 1 CPU and 1 Developer.

Web
Services

Enterprise
Portal Workflow Integration Grid Ready Wireless Clustered

Web Cache
Advanced

Java Cache

Integrated
Identity

Management

Business
Intelligence

Open J2EE
Framework

BPEL
Run Time

BEA

ORACLE

Client: Oracle Corporation Ad #: 0026

File Name: 205A0026.indd

Ad/Project Name: ORS_More Features

Ad Headline: More Features at Half the Price

Produced by: Leo Burnett Chicago

Release Date: 8.26.04

Non Bleed:

Bleed: 8.625” x 5.5”

Trim: 8.375” x 5.375”

Live: 7.375” x 4.75”

Please examine materials carefully. For concerns, immediately contact Elise Garber at 312.220.4631.

 The Implicit Connection Cache can
handle any combination of user-authen-
ticated connections. For example, a joe.
johnson connection can coexist very well
with a sue.miller connection in the same
connection cache.

Connection Retrieval Based on
User-Defined Attributes
 One of the valuable new features in
the Implicit Connection Cache is con-
nection striping.
 Connection striping, or labeling, con-
sists of applying user-defined attributes
to a connection and making their state
persist when the connection is returned
to the cache. This speeds up future con-
nection retrieval since cached connec-
tions don’t have to reinitialize a block of
state every time. These attributes can
later be used to retrieve the same con-
nection from the cache, as follows.

Example 1: Retrieving a connection
based on the NLS_LANG attribute:

// get a connection from the cache with

NLS_LANG attribute

java.util.Properties connAttr = null;

connAttr.setProperty(“NLS_LANG”, “ISO-

LATIN-1”);

conn = ds.getConnection(connAttr);

Example 2: Retrieving a connec-
tion based on the isolation-level
attribute:

java.util.Properties connAttr = null;

connAttr.setProperty(“TRANSACTION_

ISOLATION”, “SERIALIZABLE”);

// retrieve a connection that matches

Transaction Isolation

conn = ds.getConnection(connAttr);

…

// this call will preserve attr settings

for this connection

conn.close(connAttr);

Example 3: Retrieving a connection
based on the connection tag and con-
nection attribute:

java.util.Properties connAttr = null;

connAttr.setProperty(“CONNECTION_TAG”,

“JOEʼS_CONNECTION”);

// retrieve connection that matches Joeʼs

connection

conn = ds.getConnection(connAttr);

// apply attributes to the connection

conn.close(connAttr);

// This will retrieve Joeʼs connection

conn = ds.getConnection(connAttr);

Applying Connection Attributes
to a Cached Connection
 A connection attribute can be applied
to a connection in the cache in two ways.
 One approach is to call the applyCon-
nectionAttributes(java.util.properties
connAttr) API on the connection object.
This simply sets the supplied attributes
on the connection object. It’s possible
to apply attributes incrementally using
this API, letting users apply connec-
tion attributes over multiple calls. For
example, NLS_LANG may be applied by
calling this API from module A. The next
call from module B can then apply the
TXN_ISOLATION attribute, and so on.
 A second approach is to call the
close(java.util.properties connAttr)

www.SYS-CON.com/JDJ32 September 2004

JDBC

API on the connection object. This
API closes the logical connection
and then applies the supplied con-
nection attributes on the underlying
PooledConnection (physical con-
nection). The attributes set via this
close() API override any attributes
set using the applyConnectionAttri-
butes() API.
 The following example shows a call
to the close(connectionAttributes) API
on the connection object that lets the
cache apply the matched connection-
Attributes back on the pooled connec-
tion before returning it to the cache.
This ensures that when a subsequent
connection request with the same
connection attributes is made, the
cache will find a match.

// Sample connection request and close

java.util.properties connAttr = null;

connAttr.setProperty(“NLSLANG”, “ISO-LATIN-

1”);

// request connection based on attributes

conn = ds.getConnection(connAttr);

// apply attributes to connection

conn.close(connAttr);

Connection Retrieval Based on
Attributes and Weights
 Connections may be selectively
retrieved from the connection

cache based on a combination of
ConnectionAttributes and attribute
weights.
 Weights are assigned to each key
in a ConnectionAttribute in a one-
time operation that also changes
cache properties. The cache property
CacheAttributeWeights is one of the
java.util.Properties that allows the
setting of attribute weights. Each
weight is an integer value that defines
how expensive the key is in terms of
resources.
 Once the weights are specified on
the cache, connection requests are
made on the data source by calling
getConnection(connectionAttributes).
The connectionAttributes argument
refers to keys and their associated
values.
 The connection retrieval from the
cache involves searching for a connec-
tion that satisfies a combination of the
following:
• A key/value match on a connection

from the cache
• The maximum total weight of

all the keys of the connection-
Attributes that were matched on
the connection

 Consider the following example
in which a cache is configured with
CacheAttributeWeights (see Listing 2).

(Listings 2–3 can be downloaded from
www.sys-con.com/java/sourcec.cfm.)
 Once the weights are set, a connection
request could be made as in Listing 3.
 The getConnection() request tries to
retrieve a connection from the MyCache
cache. In connection matching and
cache retrieval, one of two things can
happen:
• An exact match is found. As in

the above example, an exact
match is a connection that satisfies
the same attribute values and all the
keys defined by Keys (NLS_LANG,
SecurityGroup, and Application).

• An exact match is not found. In this
case, the closest match based on the
attribute key/value and its associ-
ated weights is used (but only if the
ClosestConnectionMatch property is
set).

 Once the connection is returned,
the user can invoke the getUn-
MatchedConnectionAttributes() API
on the connection object to return a
set of attributes (java.util.Properties)
that did not match the criteria. The
unmatched attribute list can then be
used by the caller (or application) to
reinitialize these values before using
the connection.

Conclusion
 This article highlighted a new
set of Java data access requirements
that have emerged when executing
in an enterprise grid environment
while also outlining how Oracle
Database 10g JDBC tackles the
challenges that these requirements
present.
 Whether you’re using JDBC
directly in applications via a run-time
container such as an EJB container or
through an O/R mapping framework
such as Toplink, the latest Oracle
JDBC drivers offer reliable and highly
available data sources in RAC and grid
environments and significantly sim-
plify a range of data source connectiv-
ity issues for Java developers.
 Oracle has proposed these new
features to the JSR 221 (JDBC 4.0
specification) expert group. It hopes
to see JDBC Connection Pool manage-
ment and high-availability support
for data sources within enterprise
grid environments become part
of the JDBC 4.0 standard.

Listing 1
// Example to show binding of OracleDataSource to JNDI
// with relevant cache properties set on the datasource.
import oracle.jdbc.pool.*; // import the pool package
Context ctx = new IntialContext(ht);
OracleDataSource ods = new OracleDataSource();

// Set Datasource properties
 ods.setUser(“Scott”);
 ods.setPassword(“tiger”);
 ods.setConnectionCachingEnabled(True);
 ods.setConnectionCacheName(“MyCache”);
 ods.setConnectionCacheProperties(cp);
 ods.setURL("jdbc:oracle:thin:@(DESCRIPTION= (LOAD_BALANCE=on) (CONNECT_
DATA=(SERVICE_NAME=service_name)))");

// Enable fast connection failover
ods.setFastConnectionFailoverEnabled(true);
ctx.bind(“MyDS”, ods);
…
ds = lookup(“MyDS”); // lookup datasource from the cache

// implicitly create connection cache, that is set up for fast
// connection failover
conn = ds.getConnection();
…

// return connection to the cache
conn.close();
…

// close datasource and cleanup the cache
ods.close()

www.SYS-CON.com/JDJ34 September 2004

ou may have heard the news
that Sun has opened the
doors for its employees to
start blogging, including the

most famous employee, the COO.
Blogging obviously isn’t new, and
many companies have already gran-
ted individual users the opportunity
to go ahead. However, the open flood-
gate – simply to fill in your details on
a Web page , press a button, and start
posting – is proving an interesting
challenge.
 One item that has created some
debate is what happens to the useful
information after it gets posted and
how can we prevent it from being lost
forever. It’s only human to discard
most of a day’s events, what we read
and what we heard. How do we re-
member what is important and then
how can we apply that to something
like a sea of RSS-distributed content?
 With that thought in place, and with
the JavaOne conference now becom-
ing a distant memory for me, I wanted
to spend a little time this month walk-
ing through some of the Tiger features
announced at JavaOne that didn’t have
a dedicated session. Features that per-
haps are long forgotten or were missed
in the first place.

APT
 The first feature is a new tool in the
Java Developer Kit called the Annota-
tion Processing Tool (APT). APT is
used to manipulate annotation tags
defined by JSR 175. One way to think
about annotations is to compare them
to some of the original metadata-like
tags in J2SE such as the @deprecated
Javadoc tag. When put inside a Java
comment, the Javadoc tool and Javac
tools understood the @deprecated
tag and had rules for what to do with
one when they came across it. In the
deprecation example the Javac tool
would generate a compiler warning
and the Javadoc tool would generate
some special HTML text.

 The new annotation API uses the
@interface keyword to define a new
annotation and allows you to specify
properties to represent that annota-
tion. In the case of the @deprecated
example, one property could be the
release number that the deprecation
first appeared in. Then every time you
used the @deprecated annotation you
could supply the release as one of the
properties, for example, @deprecated
(1.4) mymethod().
 How does this reduce boilerplate
code and make developers’ lives
easier? This is where the APT tool
comes in. The tool and its associated
API can parse Java source files looking
for Java annotations. By register-
ing annotation processors with the
tool, an annotation processor, which
is simply a class that has a process
method, can generate custom rules
for each annotation. The annotation
processor could be a very simple
Javadoc-like tool that generates text
output displaying the properties of
the annotation it is parsing. The more
advanced annotation processor could
generate new code and the API could
provide access to a Filer class that can
help generate that boilerplate code in
a new class, which is then passed to
the Javac compiler.
 For most users the developer tools
are already gearing up for annotation
and processing support so that the
only task left for the user is to add the
annotation and let the tool take care of
the rest.

Diagnostics
 We have a great monitoring article
in the JDJ pipeline that will explain
how you can now get low-memory
alerts using JMX or SNMP technology
and delve into the monitoring and
management frameworks. However,
there are also several small tools in
the reference implementation that
can be used to help track down simple
issues.

 One such tool is called jps. jps -l
will list all the J2SE 5.0 reference
JVMs running on that machine,
which is especially useful on older
Linux releases. The JVM ID or pro-
cess ID that is returned from jps can
then be used by other diagnostic
or debug tools. Another new tool is
jstack, which can generate a stack
trace on a running JVM. If you supply
the jstack -m option, Java and native
code will be listed in your stack trace.
Look for other tools like jmap and
jinfo to provide further diagnostic
information.
 You can even generate a stack
trace from your own program with-
out having to throw and catch an
exception. This is achieved with the
new stack trace API; the easiest way
to use it is to call Thread.getAllStack-
Traces() and then simply read the
output.

Java Plugin
 The final feature I want to shine
a spotlight on is one of the small
improvements to the Java Plugin.
When you load an applet, the default
color for the background is dull gray.
In 1.4.2 a tiny coffee cup icon was
placed in the corner of that gray
background. In 5.0 the first step
in launching an applet is to display
the coffee cup logo on a white
background with a rotating clock-
wise swirl. It also displays a progress
bar tracking the classes that are
being loaded. It not only looks
better but gives download feedback
to end users.
 If you have heard of these three
features before, I hope this was a
useful reminder. If you’re new to
them, look out for future coverage
in JDJ. On that note, a big thank
you to everyone who has submit-
ted J2SE 5.0 article proposals. As a
JDJ reader I’m really looking forward
to seeing the finished articles come
through.

Core and Internals Viewpoint

Calvin Austin
Core and Internals Editor

Three Gems
from JavaOne

Y

A co-editor of JDJ since

June 2004, Calvin Austin

is the J2SE 5.0 Specification

Lead at Sun Microsystems.

He has been with Java

Software since 1996 and

is the Specification Lead

for JSR-176, which defines

the J2SE 5.0 (“Tiger”)

release contents.

calvin.austin@sys-con.com

www.SYS-CON.com/JDJ36 September 2004

design pattern is a solution to
a recurring problem. Although
using patterns this way is well
known and has been around for

a while, it was only when the GoF wrote
their famous book, Design Patterns, on
software design patterns, that patterns
slowly but surely became an industry
standard.
 A design pattern is not just object-
oriented design, but the communica-
tion between these objects. The GoF
Creational patterns are a specific subset
of these patterns that create objects for
you, rather than creating them directly.
Why would you want that? It provides
cleaner development and easier main-
tenance for your applications. I’ll cover
five creation patterns here, and attempt
to help you learn and implement them.
It’s important to not only understand
their usage, but also know when to use
these patterns. (A basic knowledge of in-
terfaces and abstract classes is assumed
as a prerequisite for this article.)
 I’ll provide at least one simple way to
implement each pattern, and at least one
scenario in which you might use it. Of
course, a complete description is beyond
the scope of this article. The other two
categories for patterns, as defined by the
GoF, are structural and behavioral. We
won’t discuss these categories here, but
instead will keep our focus on creational
patterns.

The Factory Pattern
 This pattern returns an instance of
one of several possible classes based on
the data passed. This allows us to in-
troduce new classes without modifying
the code substantially. An immediate
advantage here is that the instantiation
of the class occurs inside the Factory
class, which provides more flexibility in
code maintenance and development
than having to create an object directly
in the client of this class.

Example
 An example of a Factory pattern is the
home interface of an EJB that instanti-
ates a bean based on the data passed to
it. Here’s another simple hypothetical
example. We have a Web site where users
are required to enter their phone num-
bers. To keep our example simple, the
phone number can be entered in one of
two formats, as shown in Table 1.
 Our implementation of the phone
classes would look like Listing 1. In this
listing we have a base abstract class and
two subclasses. Our base class is abstract
because we want to enforce instan-
tiation of a subclass only. It’s also not
necessary to define a constructor for our

base class. We have a PhoneFactory class
that decides which of the subclasses
would be returned based on the argu-
ment that is passed to the factory. The
returned object from our factory is one
of the subclasses, depending on the data
passed. Now all a client class needs to do
is call the getPhoneNumber() method in
the factory class with the phone number
as its argument.

The Abstract Factory Pattern
 An abstract factory is a factory object
that returns one of several related
factories. There can’t be any simpler
definition. This means that instead of
returning one subclass, it returns an
abstract class that can in turn return
a family of its subclasses. Thus both
composition and inheritance play

equally important roles here. The benefit
of using this pattern is that it isolates the
concrete subclasses from the client. This
pattern should be used when the system
is required to be independent of how the
components are organized.

Example
 We’ll expand our future example of
phone numbers. If we internationalize
our Web page, we can have different
phone number types for different coun-
tries (see Table 2).
 The implementation of the classes
is shown in Listing 2. We have more or
less a similar structure as before, only
a little more complex. Here we have a
base abstract class and two subclasses.
The subclasses implement the abstract
methods of the base class that are
capable of returning a PhoneNumber
object. We have an International-
PhoneNumberFactory class that decides
which of the subclasses would be
returned based on the arguments that
are passed to the factory. As before, all
a client class needs to do is call the get-
InternationalPhoneNumber() method
in the InternationalPhoneFactory class
with the phone number as its argument.
The instantiation details and which sub-
class gets instantiated are hidden from
the user. Once we have an international
phone number object, we can still have
phone numbers with or without spaces
for both of the countries. We would call
the “with” or “without spaces” method
using our previous PhoneFactory class,
if required.

The Singleton Pattern
 This pattern is used when a class can
have only one instance in a system.
Think of a Web application when one
application-level class is used to track a
number of clients. Multiple classes per
session are unnecessary; just one for all
the clients would suffice. This pattern

Solutions

by Puneet Sangal

Java GoF Creational
Design Patterns

A

Puneet Sangal has

been working with

Java for more than

six years, focusing on

enterprise Web-based

Java applications. He is a

Sun Certified Programmer

for platform 1.4.

 psangal@nlg.com

For cleaner development and easier maintenance

37September 2004www.SYS-CON.com/JDJ

can be achieved in a number of ways.
For example, we can create an excep-
tion that will be thrown by a class if it’s
instantiated more than once. Next we’ll
have a boolean static variable in our
class, because a static variable can be
shared among all instances of a class.
In the constructor of this class, we’ll set
this variable the first time it’s instanti-
ated. Any other time, since it is already
set, the constructor would throw an
exception if this variable is already set.
This is an excellent strategy. But take
care to de-set this variable when the
instance is destroyed (in the finalize
method). Different JVMs can exhibit
different behaviors; using this would
ensure we can instantiate an object of
this class again after it is destroyed.
 If a generic class is needed that only
provides static methods, that class can
also be declared as final. Using this
final-static combination would prohibit
any instance creation and allow us to
use this class as a whole. Note that this
is different from the earlier approach,
where we actually created a single ob-
ject of the class.
 Another popular approach to creat-
ing Singleton patterns involves having
a private constructor and a static
method in a class. The private con-
structor would ensure that an instance
can be created only from within the
method of the class, which is static. The
static method would return an instance
and set a boolean variable indicating
instance creation. As before, we would
de-set this variable in the finalize
method as a good coding practice.
 These approaches are simple and
direct, so I won’t provide any example
code for them.

The Builder Pattern
 The Builder pattern allows a client
object to construct a complex object by
specifying its type and content only. The
way in which objects are assembled can
be achieved using a Factory pattern. The
factory class used here is called Director,
and the actual classes derived are called
Builders. This pattern is similar to the
abstract factory pattern because both
return a family of objects. The difference,
however, is that the abstract factory
returns a family of related objects while
the Builder pattern constructs a complex
object one step at a time depending on
the data supplied.

Example
 I’ll attempt to describe a simpler ex-
ample in which a Builder pattern can be
used without providing a Java template
for it, as that is beyond the scope of this
article (constructing a Builder pattern,
Java example would consume 150–200
lines of code). Consider a fast-food
restaurant like Burger King where they
have a special meal for kids. Irrespec-
tive of whether the order is chicken, a
hamburger, or something else, the meal
always consists of food and a toy. Here
the client is the customer, the cashier
is the director, and the restaurant crew
is the builder. The builder knows how
to build the meal, the director knows
what to build, but they don’t know how
to perform each other’s tasks. This is a
layer of insulation the pattern provides
us, that each can be varied without af-
fecting the other.

The Prototype Pattern
 This pattern is used when you want
to copy an existing instance of a class,

instead of creating a new one. Why?
Because there might be so much data
already in the object that it will take a
considerable amount of time to get it
again with a new instance. We can use
the clone() method of the Object class to
create a copy. Of course, the objects that
can be cloned need to implement the
Cloneable interface.
 Imagine a list of value objects that
can be obtained from a database that
will contain a thousand objects. Each of
these value objects would have a lot of
information. This data is displayed on
a particular Web page and our busi-
ness need states that the information
it contains must be isolated from other
database transactions until the user logs
out. This information should be dis-
played in part on different Web pages.
This calls for creating a clone. One thing
to pay attention to while cloning is that
any operation performed on the copied
data will also occur on the original data
because references to data objects are
copied, not the objects themselves. In
some cases, this might be unacceptable.
In this case, our class would also imple-
ment a Serializable interface.
 Now we would just write our object
out to a stream and reread it, making
the two objects completely indepen-
dent of each other. This again assumes
that all the objects contained in this
class are themselves serializable. List-
ing 3 provides the deepClone() method.

Summary
 I’ve discussed five creation patterns
here. If you are interested in learning
more about patterns, I would recom-
mend reading one of the many books
available about design patterns.

References
• Sangal, P.M. “Using Interfaces and

Abstract Classes”: http://java.ittool-
box.com/documents/document.
asp?i=3063

• Java Creation Patterns: www.
fluffycat.com/java/patterns.
html#creationalpatterns

• Cooper, J. “Java Design Patterns”:
www.patterndepot.com/put/8/
JavaPatterns.htm

 Table 1 Phone number formats

Phone Number Description
xxx xxx-xxxx Phone number indented with spaces between area code and the number

xxxxxx-xxxx Phone number with no spaces between the area code and the number

 Table 2 Phone number types

Names Description
USA Ten-digit phone numbers. Still can have both above formats in the factory pattern example.

Spain Nine-digit phone numbers. Also can have both above formats in the factory pattern example.

A design pattern is not just object-oriented design,
but the communication between these objects”“

www.SYS-CON.com/JDJ38 September 2004

Solutions

Listing 1
package factory;

public abstract class PhoneNumber
{
 protected String m_AreaCode;
 protected String m_Number;

 public String getAreaCode()
 {
 return m_AreaCode;
 }
 public String getNumber()
 {
 return m_Number;
 }
}

package factory;

public class PhoneNumberFactory
{
 public PhoneNumber getPhoneNumber(String s_PhoneNumber)
 {
 if (s_PhoneNumber.trim().indexOf(" ") > 0)
 return new PhoneNumberWithSpaces(s_PhoneNumber);
 else
 return new PhoneNumberWithoutSpaces(s_PhoneNumber);
 }
}

package factory;

 public class PhoneNumberWithoutSpaces extends PhoneNumber
{
 public PhoneNumberWithoutSpaces(String s_PhoneNumber)
 {
 this.m_AreaCode = s_PhoneNumber.substring(0, 3);
 this.m_Number = s_PhoneNumber.substring(3, s_
 PhoneNumber.length());
 }
}

package factory;

public class PhoneNumberWithSpaces extends PhoneNumber
{
 public PhoneNumberWithSpaces(String s_PhoneNumber)
 {
 this.m_AreaCode = s_PhoneNumber.substring(0, 3);
 this.m_Number = s_PhoneNumber.substring(4, s_
 PhoneNumber.length());
 }
}

Listing 2
package abstractfactory;

import factory.PhoneNumber;

public abstract class InternationalPhoneNumber
{
 protected String m_InternationalPhoneNumber;

 public abstract PhoneNumber getPhoneNumberWithSpaceFor
 mat();
 public abstract PhoneNumber getPhoneNumberWithoutSpace
 Format();
}

package abstractfactory;

public class InternationalPhoneNumberFactory
{
 public InternationalPhoneNumber getInternationalPhoneNumber
(String s_Country, String s_InternationalPhoneNumber)
 {
 if (s_Country.equalsIgnoreCase("USA"))
 return new USAPhoneNumber(s_InternationalPhoneNumber);
 else
 return new SpanishPhoneNumber(s_InternationalPhone
 Number);
 }
}

package abstractfactory;

import factory.PhoneNumber;
import factory.PhoneNumberWithSpaces;
import factory.PhoneNumberWithoutSpaces;

public class SpanishPhoneNumber extends
 InternationalPhoneNumber
{
 public SpanishPhoneNumber(String s_SpanishPhoneNumber)
 {
 this.m_InternationalPhoneNumber = s_SpanishPhoneNumber;
 }

 public PhoneNumber getPhoneNumberWithSpaceFormat()
 {
 return new PhoneNumberWithSpaces(this.m_InternationalPh
 oneNumber);
 }

 public PhoneNumber getPhoneNumberWithoutSpaceFormat()
 {
 return new PhoneNumberWithoutSpaces(this.m_Internationa
 lPhoneNumber);
 }
}

package abstractfactory;

import factory.PhoneNumber;
import factory.PhoneNumberWithSpaces;
import factory.PhoneNumberWithoutSpaces;

public class USAPhoneNumber extends InternationalPhoneNumber
{
 public USAPhoneNumber(String s_USAPhoneNumber)
 {
 this.m_InternationalPhoneNumber = s_USAPhoneNumber;
 }

 public PhoneNumber getPhoneNumberWithSpaceFormat()
 {
 return new PhoneNumberWithSpaces(this.m_International
 PhoneNumber);
 }

 public PhoneNumber getPhoneNumberWithoutSpaceFormat()
 {
 return new PhoneNumberWithoutSpaces(this.m_
 InternationalPhoneNumber);
 }
}

Listing 3
public Object deepClone()
{
 try
{
 ByteArrayOutputStream byteArrayOutputStream = new
 ByteArrayOutputStream();
 ObjectOutputStream objectOutputStream = new ObjectOutput
 Stream(byteArrayOutputStream);
 objectOutputStream.writeObject(this);

 ByteArrayInputStream byteArrayInputStream = new ByteArra
 yInputStream(byteArrayOutputStream.toByteArray());
 ObjectInputStream objectInputStream = new ObjectInput
 Stream(byteArrayInputStream);
 return objectInputStream.readObject();
}

 catch (Exception ex)
{
 System.out.println(“Error in deep cloning: “ +
 ex.getMessage());
 return null;
 }
}

www.SYS-CON.com/JDJ40 September 2004

his article describes a Java Card
and how to write applications
that can be accessed by enterprise
applications. We’ll discuss the

complete development and testing pro-
cess for card applications. The sample
application and the code listings are kept
simple for readability and easier compre-
hension of the basic ideas.

Java Card
 More uses are being found for smart
cards since their introduction about a
decade ago. As the name suggests, these
cards are smarter than the usual mag-
netic strip cards due to a built-in chip
– either a memory chip or a micropro-
cessor. Microprocessor smart cards are
becoming more popular as they’re more
secure and can process information. A
Java Card is a smart card with a micro-
processor and the smallest Java Virtual
Machine (JVM) called the Java Card
Virtual Machine (JCVM). Please refer to
Sun’s specification on Java Card Virtual
Machine specs. It makes sense to put a
JVM on smart cards due to the following
advantages of Java:
• A standard programming language
• Inherent security
• Multiple programs and applet in-

stances can coexist on the card due
to Java’s security

• Integration with mainstream Java
IDEs

• Benefits of object-oriented
programming

• Platform and vendor independence

Card Hardware and Software
 The cards with processors usually
have an 8-bit microprocessor (similar to
6805 or 8051), although the new cards are
coming out with 16-bit processors. They
usually contain three types of storage:
• ROM: For persistent, nonvolatile, and

nonalterable data
• EEPROM: For persistent, nonvolatile,

and alterable data
• RAM: For nonpersistent, volatile, and

alterable temporary data

 ROM is usually used for system soft-
ware that’s masked with some preissu-
ance data. EEPROM is used by post-is-
suance applications and some part of it
can also be used by the system software.
RAM, of course, is used as a scratchpad
for temporary storage.
 Most Java Cards have a native operat-
ing system that interfaces with the JCVM.
The Java Card Runtime Environment
(JCRE) sits on top of the JCVM and inter-
faces with the applications (see Figure 1).
 The Java Card system supports a
small subset of Java APIs that includes
the following packages:
• java.lang
• javacard.framework
• javacard.security
• javacardx.crypto

Package java.lang
 The Java Card java.lang is a subset of
the JSDK java.lang. This package pro-
vides the basic support for the language,
which defines the root class Object and
some basic classes for exceptions.

Package javacard.framework
 This is an important package for the
Java Card; it defines the Applet class
and the APDU class, which provides the
infrastructure for communication. There
are other supporting classes like the PIN
class for PIN access and validation sup-
port. The Java Card java.lang package
does not support the System class so the
javacard.framework.JCSystem provides
that support.

Package javacard.security
 This package provides cryptographic
support for the Java Card platform. It’s
based on the JSDK java.security pack-
age.

Package javacardx.crypto
 This package provides interfaces and
classes that are subject to U.S. export
regulations. It’s up to the JCRE provider
to provide implementations to most
of the classes in this package. A smart

card may have a separate coprocessor to
perform cryptographic operations.

Card Protocol
 The card communicates with the
host via a card reader in a half-duplex
manner. The communication packet is
called Application Protocol Data Unit
(APDU). The command is sent by the
host and the card responds to it. The
command APDU is called as C-APDU
and response APDU is referred to as
R-APDU.
 The headers for a C-APDU and R-
APDU are shown in Figure 2.
 The C-APDU header contains 4 bytes:
• CLA: Class of instruction
• INS: Instruction code
• P1 and P2: Parameters 1 and 2

 The optional body section varies in
length:
• Lc: Specifies the length of the data

field
• Data field: Data sent to the card
• Le: Number of bytes expected from

the card

 The R-APDU response to the card is
as follows:
• Data field: Optional and contains data

sent by the card, with the length speci-
fied by Le.

• SW1 and SW2: These form the status
word. If the value is 0x9000, the com-
munication was successful, otherwise
this would represent an exception
code.

Smart Cards

by Vijay Phagura
and Anita Phagura

Writing Java Card Applications

T

Vijay Phagura,

 a professional Java/J2EE

consultant, has over 12

 years of experience in

software architecture

and development. He

specializes in designing and

developing software using J2EE

and other Java technologies.

 vphagura@yahoo.com

Writing applications for the smallest JVM

Anita Phagura has more

than 12 years of experience

in software development.

She has designed and

worked with many different

Java and J2EE technologies

and APIs. She also has

experience with different

 GUI technologies. Anita has

patents pending for some

of her work in the software

architecture and design arena.

anita_phagura@yahoo.com Figure 1 General architecture

JCRE

System Classes

JCVM Native Layer

EWallet AppletEGate Applet

41September 2004www.SYS-CON.com/JDJ

Application Development Process
 The JCVM differs from the standard
JVM as it’s divided into two parts:
the interpreter running on the card,
and the converter running off-card.
The class fi les are passed through the
converter, which produces a converted
applet (CAP) fi le, along with other
fi les. The CAP fi le is loaded onto the
card, which is then instantiated and
executed using the interpreter. It’s a
two-step process to execute a Java Card
application.
 To download the Java Card Develop-
ment Kit 2.1.1(JCDK) visit the link in the
Resources section. JCDK comes with a
reasonably good documentation to get
you started.

The Card Applet
 The applications developed for cards
are Java applets that extend from java-
card.framework.Applet, which is one of
the differences between a Java Card ap-
plet and a regular Java applet. The card
applet has a private constructor that
can only be instantiated by the JCRE.
Also, it has different methods like install,
process, etc., unlike the regular applet’s
init, start, stop, etc., methods. The install
method instantiates the applet and

the other objects it needs when select
is called. The select method prepares
the applet to receive APDU commands
from the host. The process method
processes the APDU commands and
prepares responses.
 Each package and an applet are iden-
tifi ed by an ID called AID. An applet can
have an AID 5–11 bytes long. The fi rst
5 bytes of an applet AID should be the
same as its package AID.

Java Card Application
 We’ll now develop an application
that will use the Java Card as an identi-
fi cation card for a temporary employee
in an organization. The application
will be loaded on the card along with
his personal information. To retrieve
the information that’s not stored on
the card for this individual (e.g., a start
date and an end date of the person’s
contract, etc.), this application can
access the database on the host system.
Along with the access function, the
card can be used within an organiza-
tion for various other functions, e.g., an
employee is allowed to purchase items
from a company store on credit, and
the amount due will be stored on this
card.

 The application designed here sup-
ports the following functions:
• Provides an ID for access at the

entrance gates
• Allows or disallows entrance to the

person by disabling the card. The
card can be disabled by at least two
conditions:

 – Contract expired, detected by off-
 card application
 – Not paying the dues on time, as will
 be discussed later
• Keeps track of amount due
• Keeps track of number of days left to

pay the dues

 There would be an attribute on the
card that keeps track of the number of
days the person has to pay his dues. Not
honoring this would deactivate the card
and forbid the person automatic entry
(this condition may not be valid in a real-
world application).
 This application demonstrates that
all the data for a person does not have
to be on the card; a few things can be
done by off-card applications on the
host system. For instance, the card ap-
plication does not keep track of when
the contract is expiring; this can easily
be done off-card. It’s extremely impor-

Build your legacy.
What lasting impact can you truly make? We asked this
question as a company when we were chartered over
three decades ago. Our answer? Our legacy will be seen
in the eyes of families and their children, and in the
communities we help shape. The people we serve are
energetic, goal-directed, and diverse — just like the
professionals who define our growing organization. We
invite you to bring your own individual perspective to an
industry leader whose clear mission is to bring greater
stability to the nation’s mortgage markets, and to
expand opportunities for homeownership and
affordable rental housing.

To learn about our superior benefits, including relocation
assistance, to apply online, and for full details on our
opportunities, please visit our Web site at:
www.FreddieMac.com/Careers.
Freddie Mac is an equal opportunity
employer who firmly supports and
recognizes the value of diversity.

www.FreddieMac.com

We have opportunities for professionals with all levels of
Java experience to support our rapidly growing, state-of-
the-art IT department.

www.SYS-CON.com/JDJ42 September 2004

tant to design the on-card applets care-
fully in order to respect the resource
constraints.

The Code
 Listing 1 provides the code for the
card applet class EPersonApplet. It
seems pretty long at first look, but it is
simple. (Listings 1–9 can be downloaded
from www.sys-con.com/java/sourcec.
cfm.) In brief, the code declares a lot of
constants that are instructions for each
command that the applet will process
and these instructions represent the INS
byte of the APDU word. Apart from the
INS bytes there’s an arbitrary CLA byte
for this applet’s APDU class and an AID.
There are also six fields in this applet to
hold the data.
 The fields are:
• empId to store the Employee ID
• firstName to store the first name
• lastName to store the last name
• active to indicate whether the card is

active
• amount to store the Amount due
• allow to store the number of days to

pay the due amount

 It’s important to note that the fields
can be of type byte, boolean, or short
(of course, arrays are allowed). In the
Java Card specs, support for integer is
optional.
 Next is the constructor. Note that it
is declared as private for reasons de-
scribed earlier. The actual data for each
field is described in the comments in
this constructor. The constructor takes
a byte array as one of the parameters to
initialize these fields. The initialization
string is 28 bytes. For the sake of this
example, each field has been assigned
a length, for instance, the name fields
can be 10 bytes long and so on. (Note:
For testing this applet with the Java
Developer Kit 2.1.1, the lengths may
have to be reduced because of tool
limitations, which takes fewer bytes

for initialization.) Some card platforms
also send AID + 4 bytes along with the
initialization parameters to the applet
constructor. These extra 4 bytes are:
• Length of applet instance AID
• Length of application privileges
• Application privileges
• Length of application-specific

parameters

 The local variable short offset takes
care of pointing to the initialization
parameters, avoiding the AID + 4
bytes. The method Util.arrayCopyNon-
Atomic() is the card version of System.
arrayCopy(). As the name suggests, it
is array copy utility. Its atomic version
is Util.arrayCopy(), which means the
card supports transactions and guar-
antees that if a transaction fails, the
original data is not lost; for instance, if
the card is disconnected.
 One important task for the con-
structor is to register the instance
with the JCRE by calling the register()
method of the super class.
 The next method is the install(). As
soon as the application is installed, the
JCRE calls this method, which in turn
creates an instance of this applet.
 The process() method does all the
command processing and in this
applet it delegates by calling the ap-
propriate method. This method is also
called when the applet is selected by
the JCRE. The rest of the code in this
method is self-explanatory. It’s impor-
tant to note the exception handling: the
class ISO7816 declares constants for
the exceptions and the applets can call
the throwIt() method on it to throw the
exceptions.
 The rest of the code implements the
commands. The following describes
how to send and get data to and from
the card. The steps for the “set” com-
mands or sending data to the card
applet are:
• Get the APDU buffer reference by

using apdu.getBuffer().
• Set the JCRE mode to receive data:

let JCRE know the amount of data to
receive and receive the data. This all
can be done by calling apdu.setIn-
comingAndReceive() method or by
separate methods.

• Check if the number of bytes
received is correct.

• Copy the bytes to a local variable.
• Process the received data.

 Similarly, the “get” commands or
getting data from the card applet can be
generalized in the following steps:
• Get the APDU buffer reference by

using apdu.getBuffer().
• Set the JCRE mode to outgoing and

let JCRE know the amount of data
to send and send the data. This can
all be done by calling apdu.setOut-
goingAndSend().

• Convert data if necessary.
• Send the data using apdu.setOut-

goingAndSend ().

 The getAllInfo() is a useful command
for the application. To gather all the data
from all the fields, prepare them into a
byte array and send them. (As shown in
Listing 6, this can be useful in creating
client objects.)
 Compile the applet using JSDK 1.3.x,
with the Java Card JARs in the classpath,
to get a class file.

Using the Java Card Development Kit
 Now that we have the applet de-
signed, it’s time to test it. Testing can be
done off-card for sanity and then loaded
to a real card. For testing and simulation
we can use the Java Card Development
Kit (JCDK) 2.1.1.
 The following are brief descriptions of
the various tools provided by the JCDK.

Converter
 The converter tool in the JCDK con-
verts the class file to a CAP file, which is
put on the card. The converter is run on
the command line with many options,
which are well documented in the JCDK.
Another way to run it is to use an .opt file
that has all the options defined. Listing 2
provides a sample opt file.
 Please refer to the JCDK documenta-
tion for the description of all options
used in the opt file.
 The Converter produces other files
too, apart from the CAP file. For now
we’re only interested in the CAP file. The
following line shows how to start the
Converter using an opt file.

converter -config egate.opt

JCWDE
 This is the Java Card Workstation
Development Environment tool that
comes with the JCDK. It needs an .app
file to run; a sample .app file is shown in
Listing 3.

Smart Cards

 Figure 2 C-APDU and R-APDU header

Mandatory Header

CLA INS P1 P2 Le Data Field Le

Optional body

Data Field

Optional body Mandatory Trailer

SW1 SW2

C-APDU structure

R-APDU structure

43September 2004www.SYS-CON.com/JDJ

 This file lists the applets to be tested.
There is an InstallerApplet that always
gets loaded before any other applet.
More info on this applet can be found in
the JCDK documentation. The JCWDE
tool can be started on a command line
as follows:

JCWDE –p <port #> egate.app

 After it has been successfully started
it waits to listen on the specified port.

Apdutool
 This tool executes the command
script, the .scr file, and produces
responses from the applet. A sample
.scr file is shown in Listing 4. As seen in
this listing, the .scr file is a script to run
commands. The first few commands are
routine commands as there is always
an InstallerApplet on the JCDK to install
other applets. After these commands
the EPersonApplet is selected first
before any commands can be issued on
it. For more info on the format of the
Installer commands, please refer to the
JCDK documentation.

 This .scr file can be fed to the
apdutool, which in turn gives out the
responses from the card for each com-
mand. Listing 5 shows a sample of these
responses. The apdutool can be started
as follows:

apdutool egate.scr > egate.out

 The output can be sent to a file as
shown above or, if the output filename
is omitted, the output goes to the con-
sole.
 As seen from this file, the bytes
0x9000 in the SW1 and SW2 indicate a
successful response.
 The JCDK is very useful for testing
your card applet by simulating it on
your workstation. It helps you develop
and improve your application without
burning up card resources.
 These are the steps to test the applet
using JCDK tools:
• Write an .opt file to run the

Converter tool.
• Convert the class file into a CAP file

using the JCDK Converter utility.
• Write an .app file, which describes

the applet to the JCWDE. This file
lists the installer applet, its AID, and
the applet under test and its AID.

• Start the JCWDE tool in a command
window using the .app file.

• Write a .scr file, which contains all
the APDU commands.

• Run the .scr file through the apdu-
tool in another command window.

Real Card
 Now that we have designed, devel-
oped, and unit tested our applet, we’re
ready to load it onto a real Java Card.
 The one we used is called the Cyber-
Flex e-gate 32K card from Axalto. This is
one of the cards that supports Java Card
2.1.1. It has 32K of EEPROM space and
the hardware specs are as follows:

Technology is hot again. Is your
career? NOW is the time to explore
new opportunities.

Visit Dice.com to find a better job
with better pay. Check your salary.
Compare your skills. Search over
50,000 tech jobs from leading
companies and choose to have
new jobs emailed to you daily.

IT’S TIME for something better.
Visit Dice.com today.

F I N D S O M E T H I N G B E T T E R .

©2004 Dice Inc.

ROM: 96K RAM: 4K EEPROM: 32K

Enhanced 8-bit CPU with extended addressing
 modes

Data retention: 10 years

EEPROM endurance: 500,000 write/erase cycles

Single power supply: 2.7V to 5.5V

Icc supply current: MAX 50mA at 5MHz

www.SYS-CON.com/JDJ44 September 2004

 Axalto also has 64K cards. The 64K
card and the 32K e-gate cards are both
JavaCard 2.1.1 compliant. The main
difference between the 32K and the 64K
is the capacity. The 64K card currently
does not have an e-gate feature. The
final difference is that the 64K card does
not have Codeshield (on-card byte code
verifier), whereas the Cyberflex 32K e-
gate does. There will be an e-gate version
of the 64K card available later this year.
 Axalto supports all of its cards with
an SDK (Software Development Kit),
which is very versatile and an all-in-
one toolkit. We used the current release
– SDK 4.5 version. It’s not necessary to
use the SDK; however, it includes a set of
convenient tools for developing on-card
and off-card applications. Specifically,
the SDK provides a set of middleware
interfaces that makes writing off-card
applications very convenient.
 For more information on these cards
and the features of the SDK please visit
the link at the end of this article. The
user manual for the SDK is freely down-
loadable from their site.
 Once you have decided on the card,
use its software to load the applet onto
it. Irrespective of the type of card or
toolkit, it’s important to note that load-
ing an applet is a multistep process. One
important step is to create an instance
of an applet. Unlike the JSDK, where
class instances are dynamically created,
in the card it’s not dynamic anymore.
You have to create an instance manually
before using the application through a
toolkit. Before sending APDU com-
mands to the applet on the card, the
applet has to be selected. The selecting
process can be done through a tool
provided by the vendor or via an APDU
command.
 The applet can be tested using the
card’s toolkit. We used an Axalto SDK
tool called APDU Manager to test the
applet. You can send APDU commands
from the tool to the card and also see
the logs of responses sent by the card.

Off-Card Application
 Now that we have tested our applet
on an actual card, let’s focus on the off-
card application. The off-card applica-
tion or host application will access the
card applet or may be part of another
larger application on the host.
 These applications can be writ-
ten using the Open Card Framework

(OCF), details of which can be found at
the link given at the end of this article.
The CyberFlex e-gate cards support
this framework, but the functionality
achieved is limited. To write this ap-
plication we used Axalto’s middleware
libraries, which come with their SDK.
 As mentioned earlier, this applica-
tion can be part of a bigger enterprise
application. This can be hooked as a
proxy to the actual card and act as an
API to the card applet. For this reason
we named this application CardProxy.
The CardProxy acts as a card listener to
capture asynchronous events like card
insertion, card removal, etc.
 Listing 6 shows the complete code for
the CardProxy class. The code has been
kept simple, omitting thread safety and
some error-handling scenarios.
 Similar to the EPersonApplet, there
are a few constants for the commands.
Apart from that there are byte arrays
that define the applet AID and the keys
for the card. The keys are needed to
establish a secure channel with the card
before the applet is selected.
 As seen in the code, the CardProxy
class has to interface with JNI and hence
loads the library in the static intial-
izer. It also has to create an IOP object,
static in this case, that represents the
interoperable layer. The other important
thing to note is the connect() method.
In this method a connect() is called on
the IOP object. Even if this call returns
true, the system needs some time before
the EstablishSecureChannel method
is invoked. After a secure channel has
been successfully established, the applet
needs to be selected. After this is suc-
cessfully accomplished, only then can
we “connect” to the card. In case of an
error, the error is acquired from the card
by invoking the method getErrorMes-
sage(). The connect() on the CardProxy
is called from two places: the construc-
tor and the CardInserted() callback. The
constructor call to connect() is useful if
the card is already inserted before start-
ing the host application.
 Most of this class contains get-
ters and setters that use the method
SendCardAPDU() on the SmartCard
object. This method takes six param-
eters: command class code, instruction
code, p1, p2, a zero length int array,
and the length of the output data. The
data is returned in a short array, each
element of which contains a byte of

info. The 0th element contains the MSB
and the nth element contains the LSB.
The SendCardAPDU() is also used to set
data onto the card. It’s used exactly as
described earlier except the zero length
int array now contains the data to be set.
 The command getAllInfo() is slightly
different; it extracts all the info from the
card and creates an Employee object.
Listing 7 shows a partial code for Employ-
ee class. It’s a simple class with accessors
and mutators for the employee data.

The Client
 The real host application to use all
of the functionality of the CardProxy
class is the Viewer class. Listing 8 shows
a simple version of the Viewer that ac-
cesses all the commands of the card.
 A client application can be as simple
as the Viewer listed above or an RMI
component with a JDBC object to ac-
cess the database, and it communicates
with an application server–deployed ap-
plication. The basic idea for accessing a
Java Card is the same. Listing 9 provides
another version of the Viewer class,
which is a stand-alone Swing applet.

Conclusion
 Although Java Card technology is not
that new, it’s still unexplored territory
for many. It is advancing fast and today
there are more applications for it. We
have tried to describe the full develop-
ment process of a small project. We
hope this article was motivating and
provided some practical insight into
Java Card application development.

Acknowledgments
 We thank Axalto and, especially,
David Teo and his team for providing
excellent support and hardware, with-
out which it would have been difficult to
write this article.

Resources
• Java Card Development Kit 2.1.1

download: http://java.sun.com/
products/javacard/dev_kit.html

• Axalto: www.axalto.com
• Axalto’s Cyberflex Access Java Cards:

www.cyberflex.com
• Axalto Middleware Guide, Cyberflex

Programmer’s Guide: www.cyberflex.
com/Support/Documentation/doc-
umentation.html

• Open Card Framework: www.open-
card.org

Smart Cards

www.SYS-CON.com/JDJ46 September 2004

erkeley DB is a database with
a long history. First released in
1991 as a replacement for vari-
ous dbm implementations, it

was soon included in BSD Unix releases.
Requests for new features and com-
mercial support led to the formation of
Sleepycat Software in 1996. Using a dual
license model, Berkeley DB became very
popular for both open source and com-
mercial applications. Recently, Sleepycat
announced Berkeley DB Java Edition
(JE), a 100% Java implementation that
runs on any J2SE 1.4.2 or later JVM.
 This article introduces JE’s features
and classes and uses a sample electron-
ic voting application to illustrate its use.

Berkeley DB and JE
 The original Berkeley DB is used in a
wide variety of open source and com-
mercial applications in telecom, Internet
infrastructure, storage, security, financial
services, and other industries. Sleepycat
estimates that there are over 200 million
copies deployed, but most people are not
even aware they touched Berkeley DB.
(See “Where’s the Sleeping Cat?” available
at the URL listed in References.)
 Berkeley DB is a nonrelational
database that stores key/value pairs.
Databases can be configured to store
multiple values under a single key. Sec-
ondary databases can be created that use
different keys to access the same values.
Searches and joins can be performed
using a specific key or a range of keys.
 The original Berkeley DB (not JE) is
written in C, though there are bindings
for other languages, including Java. JE
brings to Java developers the features
of Berkeley DB and adds better integra-
tion with the Java world through Java
data type support while avoiding the
performance penalty of JNI.
 Like its C ancestor, JE is small. The
database’s footprint is less than 435K. It
supports full ACID transactions (mean-

ing its characteristics include Atomicity,
Consistency, Isolation, and Durability),
performs record-level locking for high
concurrency, and can handle huge
amounts of data: hundreds of terabytes
in a single table, with record sizes up to
two gigabytes. Frequently used data is
cached in memory. JE has better concur-
rency than the C Berkeley DB for some
applications because, unlike DB, it has
record-level locking that allows applica-
tions to continue accessing other parts of
the database when a record is locked.
 JE databases are stored as files on
the file system. Backing up a database
is accomplished by copying the files.
To restore a database, move the copied
files into the database directory and
restart the application. When an appli-
cation uses a database with transac-
tions (that group database operations
together in order to treat them atomi-
cally), checkpoints are periodically
saved to the file system by a separate JE
thread in order to make recovery faster.
Applications without transactions may
need to perform manual syncs that tell
the database to flush data in memory
to the file system, depending upon
their requirements.

Technology Overview
Databases
 JE databases are B+Trees whose re-
cords are key/value pairs. The keys and
values are byte arrays. Databases are
stored as files within a single directory.
An in-memory cache stores as much
as it can of the B+Tree structure and
frequently accessed data.
 The class DatabaseStats provides
information about a database, such as
the number of records in the database
or the depth of the B+Tree.

Environments
 A database environment coordi-
nates one or more databases. It man-

First Look

by Jim Menard

Building Applications with
Berkeley DB Java Edition

B

Jim Menard is a senior

technologist with over

20 years of experience in

software development,

design, and management.

He has developed many open

source projects including the

Java GUI report writer DataVi-

sion (http://datavision.source-

forge.net). Jim likes shiny

things (www.io.com/~jimm).

jimm@io.com

High-performance database goes pure Java

 While creating or opening databases, JE allows

you to specify many optional database configura-

tion parameters, including but not limited to:

• Maximum database file size

• Whether transactions are allowed

• Transaction timeout length

• Cache size

• Whether duplications are allowed

• How frequently to perform checkpoints

• How to sort duplicate records

 All of this is done through the Java API. You

don’t need a database administrator to create or

maintain your databases.

Configuration

 Where should you use Berkeley DB Java

Edition? Consider using JE if:

• Speed and size are issues. JE is fast and can

handle huge amounts of data.

• It makes sense to embed the database into

your application. Some applications are deliv-

ered to platforms that don’t have a database

installed or can’t connect to a database server.

• You know what questions you will be asking

of the data. Writing queries involves writing

Java code and designing the database struc-

ture to allow access to the data based on

keys other than the primary key.

 JE may not be the solution if:

• The application needs to perform ad-hoc

queries. For this you need to write Java code

to perform searches; there is no other query

language. Searches that use keys other than

the primary key used to store the data require

a secondary database, discussed later in this

article.

• Data must be shared with non-Java applica-

tions. The original Berkeley DB data format is

different than the JE format. Berkeley DB sup-

ports bindings to many languages, including

Java.

Why Berkeley DB Java Edition?

47September 2004www.SYS-CON.com/JDJ

ages transactions, allowing them to
work across databases. The environ-
ment provides the in-memory cache
used by an application. It also facili-
tates administrative operations such
as renaming or deleting databases.

Records and Binding
 Each record in a database is an
instance of DatabaseEntry, essentially a
wrapper around a byte array. Since stor-
ing Java objects is a common operation,
JE provides ways to translate between
them and byte arrays. This process is
called binding. JE provides classes for
binding simple numeric and string
objects.
 There are two approaches to creat-
ing DatabaseEntry values from more
complex Java objects: serialization or
creating a custom class that translates
the objects to and from byte arrays.
When serializing objects to be stored in
separate database records, each serial-
ized instance carries with it duplicate
information: the descriptions of the
classes involved in the serialization. JE
provides binding APIs that perform the
serialization and store the duplicate
information only once, in a separate
database (see Figure 1).

 A custom binding that maps
objects to byte arrays must subclass
TupleBinding, which implements the
EntryBinding interface. This interface
consists of two methods: objectToEntry
and entryToObject.

Cursors and Iterators
 To look up a single key, call myData-
base.get(), passing in the key as a Data-
baseEntry and another DatabaseEntry
to hold the returned data.
 To iterate through the database or
a subset of the database, both a cur-
sor and iterators are available. They
operate the same way, searching for a
(possibly partial) key and iterating over
the returned values. The difference is
that iteration uses flavors of the Java
collection classes called StoredMap,
StoredSet, and StoredIterator. Unlike
java.util.Iterators, StoredIterators must
be closed explicitly. There are two
ways to close a StoredIterator: call its
close method or call the static method
StoredIterator.close. The latter ap-
proach avoids casting when the iterator
is stored in a variable of type Iterator.
 The JE collection classes implement
all of the collection methods except
for size (for example, get, put, and

containsValue) and a few extras. See
the Javadocs for details.

Secondary Databases
 To perform searches using keys that
are different than those used to store
the data, a secondary database must
be created. The values in the secondary
database are the same as those in the
primary database. Multiple secondary
databases may be created.
 When a primary database is modi-
fied, JE updates all of its secondary data-
bases. All writing takes place through
the primary database. The one excep-

 Databases are stored as a series of log files.

When data is written to a disk, it’s always ap-

pended to an existing log file. This enables very

fast writes since the disk head does not need to

move. Log files are never overwritten or modified;

those operations are slower than appends. When

the log file in use by a database reaches a maxi-

mum size, a new log file is created. A background

“cleaner” thread organizes the log files, moving

active records from older log files to newer ones

and deleting old log files that contain no active

data.

Database Log Files

Tools that help you understand and
maintain impossibly large bodies of
source code.

www.SYS-CON.com/JDJ48 September 2004

tion to this rule is that records may be
deleted from a secondary database. The
records in the primary database are also
deleted, as are all corresponding records
in all other secondary databases.
 Creating a secondary database requires
three things: a primary database, a bind-
ing for the keys, and a binding for the
values. The value binding will be the same
one used by the primary database. The
key creator it must implement is the Sec-
ondaryKeyCreator interface, which has
the single method createSecondaryKey.

Transactions
 Transactions are enabled by an ap-
plication when an environment and
its databases are created or opened.
Once enabled, they must be used for all
database modifications. Methods such
as Database.get and Database.put take
a transaction object as an argument. If
the transaction argument is null and
transactions are enabled, the method
may either use autocommit (committing
the data when the operation is finished)
as does “put” or it may not use a transac-
tion at all, as with “get”, which does not
modify the database.
 The TransactionRunner class and
TransactionWorker interface can make
using transactions easier by handling
retries and exceptions. A Transaction-
Runner creates a transaction and calls
TransactionWorker.doWork. The runner
can retry the work any number of times.

A Sample Application
 A pair of electronic voting applica-
tions – one that simulates election day
and another that runs reports against
the collected data – will help illustrate
the use of JE. While developing this ap-
plication, I made heavy use of Sleepycat’s
JE Javadocs and “Getting Started with

Berkeley DB Java Edition,” included in
the documentation that comes with JE.
 The two applications share much
of their code. To create the data, the
election day simulator creates voting
booths, then generates votes and
sends them to the vote server. The vote
server stores information about the
booths and their votes into multiple
primary and secondary databases. The
reporting application performs que-
ries about the booths and the votes.
 The three main classes for these ap-
plications are Booth, Vote, and Vote-
Server. A booth is identified by an IP
address and knows what state, city, and
district it is in. The booth assigns each
vote a sequence number. A vote’s unique
identifier is a combination of the booth’s
IP address and the vote’s sequence
number. A vote holds a few more fields
like the race (President, State Assembly,
Dog Catcher), political party (Democrat,
Republican, Silly), and candidate.
 After thinking about the queries I
wanted to be able to run, I decided that
in addition to the primary databases
for Booth and Vote, I would need three
secondary databases: for booths using
state as the key, for votes using race as
the key, and for votes using race plus
political party.

Bindings
 Before creating databases, bindings
for Booth and Vote need to be created.
For the primary databases, I chose to use
custom binding classes. Listing 1 con-
tains the two methods implemented by
BoothBinding. The JE classes TupleInput
and TupleOutput know how to read and
write strings and intrinsics (ints, longs,
etc.).
 Bindings for the keys in the primary
databases are unnecessary because the

keys are so simple: the booth database’s
key is the IP address byte array that
needs no translation, and the vote
database’s key is a string from which we
can retrieve a byte array.
 Each secondary database needs a
SecondaryKeyCreator. One of the vote
secondary databases is indexed by race
and party. Listing 2 shows the method
that, given a vote and its primary key,
fills in the secondary key DatabaseEntry.

Databases
 When opening a database for writing,
it is created if it does not exist. A flag is set
that determines if the database is trans-
actional. Listing 3 shows this process.

Storing Votes
 The code in Listing 4 creates a
transaction, calls the method that stores
the booth and its votes, and commits
the transaction. (Listings 4–9 can be
downloaded from www.sys-con.com/
java/sourcec.cfm.) This code commits
without synchronizing the change to the
log file, which is risky (the data is held in
memory until the next sync) but faster.
 Booth and vote data are written to
the primary database. The secondary
databases are updated automatically
The code in Listing 5 stores a vote into
the vote primary database.

Reports
 The VoteServer runs five different re-
ports, each using a different technique.

Total Votes
 The following code retrieves the total
number of votes in the primary vote
database.

// try/catch not shown

XX

Database db = dbEnvironment.getVoteDb();

Cursor cursor =

 db.openCursor(null, null);

DatabaseEntry foundKey =

 new DatabaseEntry();

DatabaseEntry foundData =

 new DatabaseEntry();

int numRecords = 0;

while (cursor.getNext(foundKey,

 foundData,

 LockMode.DEFAULT)

 == OperationStatus.SUCCESS)

 ++numRecords;

First Look

 Figure 1 Serialization

Java Serialization JE Serialization

Key 1 Object 1 fields... Class info

Key 2 Object 2 fields... Class info

Key 3 Object 3 fields... Class info

Key 1 Object 1 fields...

Key 2 Object 2 fields...

Key 3 Object 3 fields...

Class info

49September 2004www.SYS-CON.com/JDJ

cursor.close();

[DELETE:

int nRecs = dbEnvironment.getVoteDb()

 .getStats(null).getLnCount();

END DELETE]

// (print number of records here)

Single Vote
 Database.get is used to find a single
vote by its primary key (see Listing 6).

Booths by State
 This report selects a state from the
database, then prints all of the booths
in that state. It runs the same query
two different ways: with a cursor (see
Listing 7) and with a JE Iterator (see
Listing 8). The Iterator code is shorter.
In both listings, error handling code
and try/catch blocks are not shown.

Total Presidential Race Vote Count
 To count how many votes were cast
in the presidential race, a StoredMap
is opened on the proper secondary
database. The duplicate records (votes)
for the presidential race are retrieved

and the number of votes is reported (see
Listing 9).

Presidential Race Results
 The last report prints the total
votes per party for the presidential race
and declares a winner. As in
the previous report, a map is created
on a secondary database and the map’s
size method returns the vote count.

Conclusion
 The electronic voting application
source code contains plenty of com-
ments and deals with all the details
ignored in this article such as error
handling. The code and properties
files that configure the databases and
transactions have not been tuned for
performance.
 To get started with the Berkeley
DB Java Edition, download it from
Sleepycat Software. Read “Getting
Started with Berkeley DB Java Edi-
tion,” browse the example code that
comes with JE, and refer to the JE
Javadocs.

 JE is available under a dual license.
The open source license is online at www.
sleepycat.com/download/oslicense.html.
Pricing starts at $40,000 for a buyout
license, which enables the customer to
redistribute JE within a specific product/
service in any volume into perpetuity.

Resources
 Sleepycat Software’s site is
www.sleepycat.com. There you
can download the Berkeley DB
Java Edition. The documentation
and example code that comes with
JE are great starting points. The site
also contains a number of technical
articles and white papers at www.
sleepycat.com/company/technical.
shtml.
 The paper “Where’s the Sleeping
Cat?” is available at www.sleepycat.
com/pdfs/index.php?paper=jdj_
wheresthecat.
 The latest version of the electronic
voting application code can be found
at www.io.com/~jimm/writing/evote.
tar.gz.

Listing 1: BoothBinding
 public void
objectToEntry(Object object,
 TupleOutput to)
 throws IOException
{
 Booth booth = (Booth)object;
 for (int i = 0; i < 4; ++i)
 to.writeByte(booth.address[i]);
 to.writeString(booth.state);
 to.writeString(booth.city);
 to.writeString(booth.district);
}

public Object
entryToObject(TupleInput ti)
 throws IOException
{
 byte[] address = new byte[4];
 for (int i = 0; i < 4; ++i)
 address[i] = ti.readByte();
 return new Booth(address,

ti.readString(),

ti.readString(),

ti.readString());
}

Listing 2: Creating a secondary key
public boolean createSecondaryKey(
 SecondaryDatabase db,
 DatabaseEntry keyEntry,
 DatabaseEntry dataEntry,
 DatabaseEntry resultEntry)
 throws DatabaseException
{
 // (Error handling code skipped)

 // The vote is in a dataEntry.
Use
 // the dataBinding passed into
this
 // SecondaryKeyCreator's con-
structor
 // to convert it into a Vote
object.

 Vote vote = (Vote)dataBinding
 .entryToObject(dataEntry);

 // Create a string key
 String key = "" + vote.race +
':'
 + vote.candidateParty;

 // Convert the key string to a
byte
 // array and give it to result-
Entry,
 // which is the DatabaseEntry
we're
 // supposed to fill with the
secondary
 // key.
 resultEntry
 .setData(key.getBytes("UTF-
8"));

 return true;
}

Listing 3: Creating and opening a database
private Database
openDatabase(boolean readOnly,
 String databaseName)
{
 DatabaseConfig config =
 new DatabaseConfig();
 config.setAllowCreate(!readOnly);
 config.setTransactional(!readO
nly);
 Database db = null;
 try {
 // If transactional, will use
 // auto-commit during the open
 db = dbEnvironment
 .openDatabase(null, databas-
eName,
 config);
 }
 catch (DatabaseException dbe) {
 // ...
 }
 return db;
}

Google, the world leader in large-scale information retrieval, is
looking for experienced software engineers with superb design
and implementation skills and considerable depth and breadth in
the areas of high-performance distributed systems, operating
systems, data mining, information retrieval, machine learning,
and/or related areas. If you have a proven track record based on
cutting-edge research and/or large-scale systems development
in these areas, we have plenty of challenging projects for you in
Mountain View, Santa Monica and New York.

Are you excited about the idea of writing software to process a
significant fraction of the world's information in order to make it
easily accessible to a significant fraction of the world's population,
using one of the world's largest Linux clusters? If so, see
http://www.google.com/cacm. EOE.

www.SYS-CON.com/JDJ50 September 2004

n a recent trip to Turkey to meet
with a customer, I heard a com-
ment that one of the reasons
Java is being held back in that

country is because of an almost ubiqui-
tous locale bug.
 In the Turkish alphabet there are two
letters for “i,” dotless and dotted. The
problem is that the dotless “i” in lower-
case becomes the dotless in uppercase.
At first glance this wouldn’t appear to be
a problem; however, the problem lies in
what programmers do with upper- and
lowercases in their code.
 The two lowercase letters are \u0069
“i” and \u0131 (dotless “I”) and are totally
unrelated. Their uppercase versions are
\u0130 (capital letter “I” with dot above
it) and \u0049 “I”. The issue is that this
behavior does not occur in English where
the single lowercase dotted “i” becomes
an uppercase dotless “I.”
 With the statement String.toUpper-
case(), most Java programmers try to
effectively neutralize case. Consider a
HashMap with string keys and you have a
key that you want to look up. If you want
to ignore case, you’ll probably uppercase
everything going into the map, its entries,
and the string you’re doing the lookup
with. This works fine for English, but not
for Turkish, where dotless becomes dot-
less. I was shown an example of this bug in
a popular HTML editor where a developer
had done this with the set of HTML tags,
so <title> would be indistinguishable from
<TITLE> to their program and all variants
in between, and probably looked like:

If (tagEnteredByUser.toUppercase().

equals(“TITLE”){

doTitleTagStuff();

}

 In Turkish when “title” is entered, the
resulting uppercase string has a dotted
uppercase I (not the English dotless
one) and the program wasn’t working as
desired. This bug is just one example of
where it had occurred. Another popular
Java application failed with a similar
bug tied back to the following code:

if (System.getProperty(“os.name”).toUpper-

case().equals(“WINDOWS”){

doStuffSpecificForWindows();

}

 The current locale is set as the user’s
country, and the implementation of
string methods use the default locale.

String toUppercase(){

return toUppercase(java.util.Locale.getDe-

fault());

}

 Given that this works for English
(where /u0060 uppercases to /u0049
correctly), why doesn’t it hold true for
Turkish? The developer did find special
code that deliberately does the dotted to
dotted, dotless to dotless, complete with a
comment ironically stating:

// special code for turkey

 The solution is to specify an explicit
English locale when uppercasing for
programmatic purposes, so the first line
of buggy code would become:

If (tagEnteredByUser.toUppercase(java.util.

Locale.ENGLISH)).equals(“TITLE”){

doTitleTagStuff();

}

 Even if this were diligently done by
everyone developing your code, you’ll still
encounter a problem when using some-
thing written by someone else whose
source you don’t have access to. For this
the current workaround by Tamar Sezgin
and others is to switch the locale of the
program before the buggy code, make the
call, and then switch back.

Locale.setDefault(Locale.ENGLISH);

// Use incorrectly written code

Locale.setDefault(new Locale(“tr”,””,””);

 The problem with this is that it fails
to follow the principle of least astonish-
ment. It’s only there because Java sup-
ports locale-sensitive case conversion.

However, this isn’t offered by alternatives
such as VB, C++, or Delphi, where case
conversion follows English rules and if
you want to do dotless “correctly” you
have to implement it yourself. The only
case where you would actually want to do
it “correctly” would be for a user-visible
string accepting a Turkish name (such as
a surname), and the developers who want
to do this would be those who were more
likely to be aware of locale issues. The
exception would then be:

Locale turkishLocale = new

Locale(“tr”,””,””);

String tag = anotherUserVisibleString.toUpp

ercase(turkishLocale));

String s2 = anotherUserVisibleString.toUppe

rcase(turkishLocale));

If(s1.equals(s2)){

doSomethingFunWithTwoEqualsStrings();

}

 However, even better would be:

If(sq.equalsIgnoreCase(s2)){

doSomethingFunWithTwoEqualsStrings();

}

so the only real case of wanting to up-
percase a user-visible string to compare
against another user-visible string is left
to developers of database indexes and
doesn’t need to be tackled at all by most
Java programmers.
 There is a PMR 53119 open to try to
get Java changed so the default logic is
to assume the string is not user visible.
However, because this would be a break-
ing change to the current behavior, it can’t
be done. In the meantime, I would urge
all developers who ever find themselves
converting a string into upper- or low-
ercase to think about whether these are
user-visible strings. If not, make sure you
explicitly use the English locale, otherwise
you’re going to serve up Java that tastes
great everywhere except Turkey.

• • •
 I would like to thank Tamar Sezgin of
IBM Turkey for explaining this problem to
me and helping with this editorial.

Desktop Java Viewpoint

Joe Winchester
Desktop Java Editor

Turkish Java
Needs Special Brewing

O

Joe Winchester is a

software developer

working on WebSphere

development tools for

IBM in Hursley, UK.

joewinchester@sys-con.com

www.SYS-CON.com/JDJ52 September 2004

 In my previous article (“Bringing Mars Down to Earth

with Java3D,” JDJ, Vol. 9, issue 6), readers were expected to

download hundreds of megabytes of Mars data to enjoy the

Java3D example. This requirement challenged even the cable

modem bunch ambitious enough to get the source code in

the first place. This time it’s definitely different. This time,

the code generates the landscapes so all you have to

download is the source. We’ll cover the foundational Java3D

data structures suitable for terrains, and how to completely

generate landscapes with fractals. (The source code for this

article can be downloaded from www.sys-con.com/java/

sourcec.cfm.)

Laying the Foundation
 When you first started programming in Java, you may
have started with the infamous “Hello World” example to
introduce yourself to the basics of Java programming. In
similar fashion, this article covers the basics of creating a
Java3D terrain world and explores the possible approaches
to creating that world.

Modeling Height Fields
 No terrain article would be complete without at least a
passing reference to height fields. Just in case you’re new to
terrain rendering, height fields or height maps represent a
regular grid of longitude, latitude, and altitude values for a
landscape. Interpreting these values and rendering them
quickly with the right colors and lighting is at the core of
rendering terrains (see Figure 1).
 Each cell corner in the grid represents an altitude at a
longitude and latitude location on a map. These values can
be used to create three-dimensional points in the Java3D

world. The longitude is mapped to the x-axis, the latitude
to the z-axis, and the altitude to the y-axis. We can use
a QuadArray as our first simple approach to modeling a
height field in Java3D.

The QuadArray Class
 The QuadArray class is one of several GeometryArray
subclasses provided by Java3D to create geometries. The
QuadArray class is for rendering a group of quadrilaterals by
specifying the corners of each quadrilateral. This is exactly
how we described a height field earlier. The secret to using a
QuadArray class is how you specify the corners of the quadri-
laterals (see Figure 2).
 The cell corners in the height field grid can be imple-
mented as the corners of the quadrilaterals in the Quad-
Array. The corners must be specified in a counterclock-
wise order. The first corner is not important, and neither
is the order of the quadrilaterals. The HelloWorld example
code starts in the lower left-hand corner for both. The
result of running the HelloWorld example is shown in
Figure 3.
 The examples in this section use hard-coded values for
the height field and are implemented in the getHeightField()
method. The geometry-building code in the HelloWorld
example is shown in Listing 1.
 This example uses the GeometryInfo utility class to make
using the QuadArray easier. The inner loop assigns the
coordinates of one square of the height field in a counter-
clockwise order while also mapping the points to the Java3D
coordinate system.

Mike Jacobs is a technical

architect working at the

Mayo Foundation for Medical

Education and Research. Mike

has developed CPU hardware,

microcode, application

components, and applications

in the financial and health care

industries. He has extensive

design and implementation

experience in object-oriented

languages including Smalltalk,

C++, and Java.

 jacobs.michael@mayo.edu

Copyright 2004 © Mayo Foundation for
Medical Education and Research

by Michael Jacobs

Generating simple terrains with Java3D
Feature

 Figure 1 Interpreting a height map as a terrain

53September 2004www.SYS-CON.com/JDJ

 This approach is fine for learning but has a few drawbacks.
1. A grid corner can be included in the coordinates array

up to four times as separate copies of the same point.
This approach is fine for small landscapes but will burn
through memory for larger terrains. Solving this with
indexed geometry arrays will be covered later in this
article.

2. While some terrain complexity reduction algorithms use
quadrilaterals, most use triangles. Since we want to even-
tually get to build large-scale terrains and your 3D video
card is optimized to render triangles, we should start
thinking in terms of triangles.

3. The Java3D specification states that quadrilaterals must
be planar or the results are undefined. The example
makes no attempt to make the quadrilaterals planar and
it might be difficult to make natural-looking terrains
with them. While I haven’t experienced any problems
using nonplanar quadrilaterals, triangles are a safer
route in the long term.

The TriangleArray Class
 The TriangleArray class is another GeometryArray subclass
provided by Java3D to create geometries. The TriangleArray
class is for rendering a group of triangles by specifying the
corners of each triangle (see Figure 4).
 Once again, the starting corner and the order of the tri-
angles are not important. The corners must be specified in
a counterclockwise order. The HelloWorld2 example imple-
ments the same terrain as HelloWorld but uses a TriangleArray
with the GeometryInfo class.
 The geometry-building code in the HelloWorld2 example
is shown in Listing 2. (Listings 2–8 can be downloaded from
www.sys-con.com/java/sourcec.cfm.) The inner loop assigns
the coordinates of two triangles for each square of the height
field similar to the previous example. Note that the number
of coordinates is higher with a TriangleArray compared to a
QuadArray for the same regular grid of height data. While we
want to use triangles, this approach uses even more memory
than the QuadArray.

The TriangleStripArray Class
 The TriangleStripArray class is an interesting Geom-
etryArray subclass provided by Java3D to create geom-
etries. The TriangleStripArray class is for rendering a series
of triangles that share edges in a grouping called a strip.
A strip of triangles is formed by specifying the corners of
a triangle based on the last two corners of the previous
triangle. A picture really helps to understand this one, so
refer to Figure 5.
 The first triangle is formed with corners (1,0), (0,0), and
(1,1). The second triangle shares the hypotenuse with the
first triangle and is formed with corners (0,0), (1,1), and
(0,1). Notice how the last two corners of the first triangle
are the same as the first two corners of the second trian-
gle? Java3D takes advantage of this pattern and shares the
corners so that only one additional corner is required to
specify the next triangle. In the HelloWorld3 example, this
continues across the row until the right edge of the height
field. At this point the series of corners have specified a
strip of triangles and the process is repeated for the next
row.
 The geometry-building code in the HelloWorld3 example
is shown in Listing 3. Using a TriangleStripArray requires ad-

ditional information about the strips. Java3D needs to know
the number of strips and the number of corners included in
each strip. The number of strips is based on the size of the
strip count array and the values in the array are the number
of corners.

 Figure 2 Specifying QuadArray coordinates

2,0 2,1 2,2

1,0 1,1 1,2

0,0 0,1 0,2

row 2

row 1

row 0

column 0 column 1 column 2

 Figure 3 HelloWorld example

 Figure 4 Specifying TriangleArray coordinates

2,0 2,1 2,2

1,0 1,1 1,2

0,0 0,1 0,2

row 2

row 1

row 0

column 0 column 1 column 2

 Figure 5 Specifying TriangleStripArray coordinates

2,0 2,1 2,2

1,0 1,1 1,2

0,0 0,1 0,2

row 2

row 1

row 0

column 0 column 1 column 2

strip 1

strip 0

Full contest details at: www.simagine.axalto.com or call 1 888 343 5773
© Axalto 2004

In association with:

WHO’S
DEVELOPING
THE COOLEST
WIRELESS
APPLICATIONS?

YOU ARE!

ENTER TO WIN THE 2005 SIMAGINE
DEVELOPERS’ CONTEST!
Over $70,000 will be awarded
for innovative SIM card services
including a special Cingular award for
best submission from North America

Deadline is October 10, 2004!

www.SYS-CON.com/JDJ54 September 2004

 An advantage of using a TriangleStripArray is that it uses less
coordinate memory than the other geometry array approach-
es. In addition, OpenGL is able to directly render a triangle
strip array with a single call to the video card. DirectX must
render each triangle individually, requiring multiple trips to
the video card.
 Using a TriangleStripArray does not require that the strips
be organized as in the example. This was done simply for
convenience and simplicity. As long as adjacent triangles share
corners, you can theoretically create one long strip for your
entire landscape.

The TriangleFanArray Class
 Java3D provides one last option called the TriangleFan-Ar-
ray. There are several terrain simplification algorithms that
substantially reduce the number of triangles used to render
the landscape. The reduction is achieved by varying the size of
the triangles to make the view “good enough,” as measured by
different metrics. While these algorithms are beyond the scope
of this article, it should be noted that the TriangleFanArray is es-
pecially well suited for rendering multiresolution triangulations.

Reducing Memory Burn
 All of the geometry arrays explored thus far have used
instances of Point3f to specify coordinates and they often rep-
resent the same 3D point several times. This approach could
be optimized for large terrains if we could eliminate the use of
Point3f and share the 3D points somehow.
 Java3D includes additional versions of the geometry arrays
called indexed geometry arrays. Once you understand how
to use regular geometry arrays, the indexed counterparts
are easy to understand. The indexed geometry array lets you
specify the corners of the height field once and refer to them
through an index. The index is used to specify which corner
to use for the triangle or triangle strips (see Figure 6).
 For this variety of index geometry arrays, the memory sav-
ings is realized at the shared corners where the strips touch.
HelloWorld4 is a version of HelloWorld3 converted to use an
IndexedTriangleStripArray. This example also eliminates the
use of Point3f objects to further save memory.

 The geometry-building code in the HelloWorld4 example is
provided in Listing 4. In this example, the coordinates do not use
Point3f objects but a float value for each of the x, y, and z values.
A loop populates the coordinate array with the values for each
corner in the height map. Next, the indices array is populated
with the index of the corner in the coordinates array. Using an
index eliminates duplicate point data. The final difference is the
setting of the coordinate indices on the GeometryInfo object.
 The Java3D API provides several options for modeling
height fields. Using indexed geometry arrays saves memory
and triangle strip arrays lets your video card render your
landscape quickly.

Fractal World, Fractal World, Excellent!
 You have probably heard of fractals and may have found
them a bit mysterious or unapproachable. I’ll demystify frac-
tal concepts and show how you can shape them into realistic
terrains (see Figure 7).

Overview
 Since Beniot Mandelbrot discovered fractals over 20 years
ago, many variations have been described in research papers
and textbooks. The computer graphics community has come
to use the term to mean anything that has a high degree of self-
similarity. A self-similar object can be translated, rotated, and
scaled to a subportion of itself. This concept is best described
by an example called the von Koch snowflake (see Figure 8).
 The von Koch snowflake is created by repeatedly replacing
each line segment with a scaled-down version of the previous
step. This is done by replacing each line segment in the cur-
rent step with an exact copy of the previous step, scaled down
by a factor of three. This process is repeated a number of times
to create a self-similar snowflake. Replacing a portion of the
shape with a scaled version of the previous step is the key con-
cept behind fractals. How can fractals be applied to terrains?
 Compare the ragged edges of a rock and the shapes
of cliffs and mountaintops and you may observe self-simi-
larity in nature. Because many natural forms such as plants
and rocks seem to be self-similar, fractals have been used as
a way to model these forms. Several fractal approaches have
been used that all roughly fall into a category called fractional
Brownian motion (fBm):
• Poisson faulting: The original terrain rendering approach

subsequently improved by other approaches
• Fourier filtering: A complex interpretation of a Fourier trans-

form of Gaussian white noise
• Successive random additions: A flexible and easy-to-imple-

ment subdivision scheme
• Midpoint displacement: An easy-to-understand and imple-

ment approach described in detail below
• Noise synthesis: The state of the industry in terrain generation

 We’ll discuss midpoint displacement in this article. See the
references for more information about the other approaches.

Midpoint Displacement
 Fournier, Fussell, and Carpenter developed a way to
generate fractal mountains based on a recursive subdivision.
To better understand this approach, we’ll first go over the
one-dimensional example shown in Figure 9.

Feature

 Figure 6 Specifying IndexedTriangleStripArray indices

5 6 7

1,0 1,1

2

0,0 0,1 0,2

row 1

row 0

column 0 column 1 column 2

strip 1

strip 0

10

0 1 2 5 6

coordinates

indices

55September 2004www.SYS-CON.com/JDJ

 We start with a line segment of unit length along the
x-axis. In the second step, we divide the line segment into
two equal halves and move the mid-point in the y direc-
tion. There are two line segments and in the next step they
are divided and their mid-points moved in the y direction
(up or down). This process is repeated a number of times to
achieve the desired effect. How much should the midpoints
be moved? The algorithm determines this by averaging the y
values of the line segment end points and adding a random
perturbation:

xnew = 1/2(xi
 + x

i+1
), ynew = 1/2(yi

 + y
i+1

) + P(x
i+1

 – x
i
)R

where P() is a perturbation based on the length of the line
segment and R is a random number between zero and
one. In our case, the perturbation is called the roughness
of the terrain. As long as the iterations gradually reduce
the roughness, we can achieve self-similarity in the result.
Applying this midpoint displacement algorithm to height
fields allows us to create fractal mountain ranges. An

extension of this algorithm is called the diamond-square
algorithm.

The Diamond-Square Algorithm
 The diamond-square algorithm gets its name from the
imaginary shapes that result from the iterative midpoint
displacement. This will become apparent as we walk
through the algorithm. This terrain algorithm is similar to
many in that it depends on the ability to split a line and
have the result land squarely on a corner in the height field.
To accomplish this feat, we must restrict the height field to
be a square having 2n + 1 corners per side. The value of n
determines how many iterations of midpoint displacement
are possible, so we call this value the level of detail. A level
of detail of three requires nine corners per side of the height
map. For our example a level of detail of two will suffice for
simplicity.
 The steps in the diamond-square algorithm are:
1. Initialize the roughness.
2. Initialize the height field corners to form an imaginary

square.
3. For each level of detail, do the following:

 • Diamonds step: Assign a height to the center of each
 square by averaging the height of each corner and
 displacing the result based on the roughness and a
 random number. This results in imaginary diamond
 shapes.

 • Squares step: Assign a height to the center of each
 diamond by averaging the height of each corner
 and displacing the result based on the roughness
 and a random number. This results in imaginary
 square shapes.

 • Scale down the roughness.

 Figure 10 depicts the results during this process for a
level of detail of two. This process can be used to create a
height field that in turn can be used to generate a terrain.
The FractalWorld example implements the diamond-square
algorithm.

A Java3D Example
 The FractalWorld example generates random fractal
terrains with the diamond-square algorithm. This
example is largely based on previous examples using
the TriangleStripArray so we won’t cover the geometry
aspect of this example. The main generation loop is con-
tained in the getHeightField() method shown in part in
Listing 5.
 This code implements the steps described above con-
sidering the boundary conditions of the height field. The
diamonds step is straightforward:

private void diamond(

 float[][] terrain,

 int x,

 int y,

 int side,

 float roughness) {

 if (side > 1) {

 int half = side / 2;

 Figure 9 A one-dimensional subdivision example

 Figure 10 Steps of the diamond-square algorithm

 Figure 7 A fractal terrain rendered with Java3D

 Figure 8 The construction of the von Koch snowflake

www.SYS-CON.com/JDJ56 September 2004

 float sum = 0f;

 sum += terrain[x][y];

 sum += terrain[x + side][y];

 sum += terrain[x + side][y + side];

 sum += terrain[x][y + side];

 float average = sum / 4.0f;

 terrain[x + half][y + half] =

 average + random() * roughness;

 }

}

 The boundary conditions become more of a concern for
the squares step since a diamond may extend beyond the
physical dimensions of the height field (see Listing 6).
 When a diamond corner is outside of the height field, this
implementation simply does not consider it in the aver-
age calculation. Another option that I have seen in other
implementations is to wrap the diamond to the other side
of the height field and use a substitute corner in the average
calculation.

Running the Example
 When running the FractalWorld example, use the key-
board bindings shown in Table 1 to fly through the world.
 The main() method sets up the roughness and level
of detail. I’ve found that a roughness between 0.35 and
0.55 subjectively looks the best. The level of detail has a
drastic effect on the results. A value of 8 seems to be a
good balance between realistic results and speed. When
running the example, you’ll see colors on the landscape
roughly corresponding to elevation. This is done with a
Java3D feature called vertex coloring.

Vertex Coloring
 In the HelloWorld examples, we used the ambient color
in the material object to specify the color of the shape. This
provides a convenient way to uniformly color a Java3D
shape. Java3D also allows each corner of the triangles in
the scene to have its own color. It combines the color of the
material with the smoothly interpolated corner colors to
produce the overall triangle color.
 Figure 11 shows the results of running the SimpleVertex-
Coloring example. Each corner is assigned a different color
and Java3D takes care of the rest. The portion of the example
that assigns the colors is shown in Listing 7.
 This listing uses black as the ambient color of the triangle,
making the vertex colors dominate. Note that the coordi-
nates and colors use objects instead of indexes. As we dis-
cussed in Reducing Memory Burn, a large terrain should use
indexed coordinates. Java3D also allows us to index colors in
a similar manner and is demonstrated in the FractalWorld
example.

Vertex Coloring in FractalWorld
 This example uses elevation-based colors to approximate
a more natural-looking landscape. The 27 colors were arrived
at by trial and error with the help of a color utility. There is
nothing significant about the number of colors I chose to
use; I was looking for gradual changes from one elevation to
the next.

Feature

 Figure 11 Vertex coloring on a triangle

 Figure 13 A multifractal landscape built with Perlin noise and Java3D

 Figure 12 The vertex coloring used in the FractalWorld example

 Table 1 Keyboard bindings

Key Function
Down Arrow Move backward

Left Arrow Turn left
Alt-Left Arrow Strafe left
Right Arrow Turn right

Alt-Right Arrow Strafe right

PgUp Look down

Alt-PgUp Move up
PgDn Look up

Alt-PgDn Move down

= Return to the starting point

57September 2004www.SYS-CON.com/JDJ

Listing 1
// The height field contains a float value for
// each [row, col] vertex.
float[][] hf = getHeightField();
BranchGroup objRoot = new BranchGroup();
GeometryInfo gi = new GeometryInfo(GeometryInfo.QUAD_ARRAY);
// The number of vertices (or coordinates) is based on the
// number of squares in the grid (4 by 4) times the number
// of corners (4) for each.
Point3f[] coordinates = new Point3f[64];
// For each corner of each square in the grid, convert the
// height field altitude value into instances of Point3f.
// The row is mapped to the minus z-axis, the column to
// the x-axis and the height field altitude value
// to the y-axis. Each iteration adds one square.
int ci = 0; // coordinate index
for (int row = 0; row < 4; row++) {
 for (int col = 0; col < 4; col++) {
 // use compass bearings to id the corners
 float sw = hf[row][col];
 float se = hf[row][col + 1];
 float ne = hf[row + 1][col + 1];
 float nw = hf[row + 1][col];

 coordinates[ci] = new Point3f(col, sw, -row);
 coordinates[ci + 1] = new Point3f(col + 1, se, -row);
 coordinates[ci + 2] =
 new Point3f(col + 1, ne, - (row + 1));
 coordinates[ci + 3] =
 new Point3f(col, nw, - (row + 1));
 ci = ci + 4;
 }
}
gi.setCoordinates(coordinates);

 A scene like Figure 12 has over 131,000 triangles so it’s a good idea to con-
serve memory by indexing coordinates and colors. Colors are defined once
and the color indices are built for each coordinate.

float[] colors = getElevationColors();

gi.setColors3(colors);

int[] colorIndices = getElevationColorIndices(hf);

gi.setColorIndices(colorIndices);

 The getElevationColors() method defines the colors and they’re set on
the GeometryInfo object. Because the example uses a TriangleStripArray,
the color indices are built similar to the coordinate indices (see Listing 8).
 The values in the height field range from 0 to 100 (lowest to highest) and the
colors are defined from highest to lowest. The NUMBER_OF_COLORS static
variable is used to calculate the index of the color based on the elevation.

Conclusion
 After running the FractalWorld example a few times you may notice that
terrain roughness does not vary much. It would be nice if the beaches and
hills were smoother than the mountains. If you are interested in solving the
terrain roughness issues here are a few tips. The algorithm presented here
is technically a monofractal, meaning that the fractal has a single uniform
fractal dimension. An approach to varying the roughness of the terrain is
called multifractals. You should have enough knowledge now to research
multifractals and implement them in Java3D (see Figure 13). Have fun!

Acknowledgments
 Thanks to my friend Jeff Ryan and my son Ryan for reviewing my JDJ
articles.

References
• Fournier, A.; Fussell, D.; and Carpenter, L. “Computer Rendering of

Stochastic Models.” CACM, 25(6), June 1982, 371–384.
• The Virtual Terrain Project: www.vterrain.org
• Ebert, D.S.; Musgrave, F.K.; Peachey, D.; Perlin, K.; and Worley, S. (2003).

Texturing & Modeling: A Procedural Approach. Morgan Kaufmann
Publishers.

• Ken Musgrave’s doctoral dissertation: www.kenmusgrave.com/
dissertation.html

• Sun’s Java3D Home: http://java.sun.com/products/java-media/3D/index.jsp
• Java3D Resources: www.j3d.org/
• A useful color utility (La Boîte à couleurs): http://pourpre.com/

colorbox/indexen.php

www.SYS-CON.com/JDJ58 September 2004

Labs

hen vendors start charg-
ing more than $10,000 for a
single tool, you know that the
product category is about to

heat up. Since Java IDEs have multiplied,
I recently took Oracle JDeveloper 10g for
a test drive – perhaps you didn’t realize
this vendor had a serious Java IDE.

Product Description
 Oracle JDeveloper 10g is an integrated
development environment (IDE) for
building Java applications. It supports
the latest industry standards for Java,
XML, and SQL including J2EE 1.3, XML,
WSDL, SOAP, UDDI, J2SE, and J2ME.
Oracle JDeveloper’s integrated features
enable the developer to manage a project
throughout the development life cycle
of modeling, coding, debugging, testing,
profiling, tuning, and deploying applica-
tions. These features are actually part of
the product. JDeveloper offers enough
features without cluttering the product
with stuff I won’t use. Contrast that with
Microsoft: its Office suite is excellent,
but I rarely use more than 10% of the
features.

Installing and Using JDeveloper
 I thought I must have skipped some-
thing – it took three minutes to install
and run JDeveloper from a CD (JDK
1.4.1 is required). Get the JDeveloper
zip file (from a CD or download it from
http://otn.oracle.com/software/prod-
ucts/jdev/), unzip it to a new directory,
then run it (Windows: [jdeveloper_root]\
jdev\bin\jdevw.exe and Other platforms:
[jdeveloper_root]/jdev/bin/jdev). I wish
all products installed so cleanly.
 The tool is written in Java, and this
version of Oracle JDeveloper has added
many features. For example, it provides
a visual layout editor for both HTML and
Swing-based user interfaces. This won’t
replace Dreamweaver, but it’s nice to
have. The Data Control Palette window
provides a view into the business services
layer. The developer can bind user-inter-
face components to a business service
with a simple drag-and-drop from this

palette. Oracle has a lot of experience
in this area due to its database heritage.
Oracle JDeveloper embraces popular
open source frameworks and tools,
providing built-in features for Struts, Ant,
JUnit, and CVS. For example, wizards
provide an easy way to define test cases,
test fixtures, and test suites for proj-
ects. Need a personal Java trainer? The
CodeCoach feature in JDeveloper scans
the application code and provides hints
and tips on changes that can be made to
optimize performance. You also get Code
Metrics to evaluate the structure of the
Java code by analyzing its complexity.
 Another nice feature in Oracle JDe-
veloper is the page flow modeler. This
modeler can be used for Struts, which
has become a key part of enterprise Java
shops. Of course, JDeveloper is the best
Java IDE on the market for building Or-
acle DB applications. This is important,
but since everyone talks about this, let’s
focus on the new features, especially the
Software Development Life Cycle (SDLC)
support and the Application Develop-
ment Framework (ADF). Oracle touts
ADF as the crown jewel of this release.
 JDeveloper supports several steps of
the SDLC. The ISO 12207, and the more
readable IEEE 1074, standard defines the
primary phases of the SDLC in academic
detail (these need a reality check). Ob-
serving these standards, the leading IDE
vendors have continually added support
for an increasing number of SDLC phas-
es. At first, IDEs added compiling, debug-
ging, and source control (i.e., CVS menu
items). Lately, project management,
requirements, and QA have started to ap-
pear in IDEs. Borland and IBM invested
heavily in SDLC functionality through
acquisitions and integration. While late,
Oracle’s ADF now includes modeling,
coding, debugging, testing, profiling,
tuning, and deploying applications.
JDeveloper is unique among enterprise
class IDEs because the SDLC feature set is
actually part of the product codebase, not
plugins or acquisitions/integrations like
its competitors. It’s a seamless IDE and
doesn’t hog your hard drive.

 Development life-cycle support is
more of a JDeveloper feature than an
ADF feature, but ADF helps. Oracle ADF’s
main focus is on simplifying the J2EE
development process through a visual
and declarative approach. Oracle ADF
is based on the Model-View-Controller
(MVC) design pattern. ADF lets develop-
ers build a simple, yet full, MVC-based
J2EE application without any coding
– just drag-and-drop, set some proper-
ties, and you’re done. Oracle doesn’t
claim ADF eliminates coding when
building J2EE applications; developers

Reviewed by
Alain Trottier

JDeveloper 10g
by Oracle Corporation

W

Alain Trottier is the

associate director of

 Internet Services at a

large telecom corporation,

responsible for the

strategy, technology, and

team building e-commerce

systems with Java used

by the company’s millions

of customers. He has also

written several books on Java.

500 Oracle Parkway
Redwood Shores, CA 94065
Web: www.oracle.com
Phone: 650 506-7000

Platforms: Any platform with JDK 1.4 support
Pricing: $995

Dell Inspiron 8000, 1 GHz Intel Pentium III
processor, 30GB Disk, 256MB RAM, Graphics RAM
32MB, Windows 2000 w/Service Pack 3

Oracle Corporation

Specifications

Test Environment

Target Audience: Java enterprise programmers
Level: Medium to advanced
Pros:
• Powerful J2EE development
• Simple installation
• Supports correct set of standards (Java, XML,
 SQL, UML)
• Life-cycle management
• Good online support and docs
• Company is fully committed to future of product
Cons:
• Should reduce steps to build/deploy EJBs
• Want more model-driven architecture

Product Snapshot

 Figure 1 JDeveloper application template editor

59September 2004www.SYS-CON.com/JDJ

Advertiser Index

General Conditions: The Publisher reserves the right to refuse any advertising not meeting the standards that are
set to protect the high editorial quality of Java Developer’s Journal. All advertising is subject to approval by the
Publisher. The Publisher assumes no liability for any costs or damages incurred if for any reason the Publisher
fails to publish an advertisement. In no event shall the Publisher be liable for any costs or damages in excess
of the cost of the advertisement as a result of a mistake in the advertisement or for any other reason. The
Advertiser is fully responsible for all financial liability and terms of the contract executed by the agents or agen-
cies who are acting on behalf of the Advertiser. Conditions set in this document (except the rates) are subject
to change by the Publisher without notice. No conditions other than those set forth in this “General Conditions
Document” shall be binding upon the Publisher. Advertisers (and their agencies) are fully responsible for the
content of their advertisements printed in Java Developer’s Journal. Advertisements are to be printed at the
discretion of the Publisher. This discretion includes the positioning of the advertisement, except for “preferred
positions” described in the rate table. Cancellations and changes to advertisements must be made in writing
before the closing date. “Publisher” in this “General Conditions Document” refers to SYS-CON Publications, Inc.

 Altova www.altova.com 978-816-1600 15

 Apple www.????.com ???-???-??? 2-3

 Axalto www.simagine.axalto.com 53

 Borland www.go.borland.com/j6 831-431-1000 9

 Business Objects www.businessobjects.com/dev/p7 888-333-6007 19

 Canoo Engineering AG www.canoo.com/ulc 41 (61) 228 94 44 13

 DataDirect www.datadirect.com 800-876-3101 4

 Dice www.dice.com 877-386-3323 43

 Freddie Mac www.freddiemac.com ???-???-???? 41

 Google www.google.com/cacm 650-623-4000 49

 H&W Computer Systems www.hwcs.com/jdj03.html 800-338-6692 51

 Identify Software www.identify.com 11

 InetSoft www.inetsoft.com/jdj ???-???-???? 39

 InferData www.inferdata.com/jdjmag 888-211-3421 33

 InterSystems www.intersystems.com/match1 617-621-0600 4

 Jinfonet www.jinfonet.com 35

 Mindreef www.mindreef.com ???-???-???? 45

 Northwoods Software Corp. www.nwoods.com/go 800-434-9820 57

 Oracle www.???.com ???-???-???? 27, 29, 31

 Parasoft Corporation www.parasoft.com/achievequality 888-305-0041 x3307 17

 Quest Software, Inc. http://www.quest.com/jdj 800-663-4723 Cover IV

 Scientific Toolworks, Inc. www.scitools.com 47

 Sleepycat Software www.sleepycat.com/bdbje 510-597-2128 25

 Software FX www.chartfx.com 800-392-4278 Cover III

 Tangosol www.tangosol.com 23

 Web Services Edge 2005 East www.sys-con.com/edge 201-802-3069 61

 Advertiser URL Phone Page

This index is provided as an additional service to our readers. The publisher does not assume any liability for errors or omissions.

would probably need to add some Java code. It does reduce the amount of
coding for application infrastructures, letting developers focus on the business
logic that is unique to their applications. The point of these wizards and the
modeling aspects of the top IDEs is to automate routine coding chores. I really
liked the application template feature shown in Figure 1.
 The templates are cool because they accelerate development with ready-to-
use J2EE design pattern implementations and metadata-driven components.
I was relieved to see how simple it was to edit and play with templates. It really
does anchor the high-level aspects of a design. JDeveloper templates approach
the idea of model-driven architecture. Now the Object Management Group
(OMG) has defined the MDA standard, which is targeted at providing a way to
model, with UML, the complete application life cycle – design, deployment,
integration, and management. Compuware OptimalJ does MDA best. I would
like to see JDeveloper implement more of OMG’s MDA in the near future.
Presently, I really like how easy it is to skeleton an application in JDeveloper
with these easy-to-pick/edit templates. Something else that caught my eye
is that Oracle lets you choose your deployment platform for ADF. Many tools
lock you into one application server. For example, BEA WebLogic Workshop
only deploys to the BEA server and IBM’s WebSphere IDE to WebSphere only.
Even though Oracle has its own application server, you can deploy to all the
major players including BEA, IBM, and JBoss. JDeveloper provides a visual
XML Schema editor that lets XML developers browse XML Schemas easily.
XML Schemas can be constructed visually using drag-and-drop from the
component palette. Furthermore, by using XML-based industry standards,
such as WSDL, SOAP, and UDDI, code components can be reused regardless
of their location or the language used in their development. JDeveloper gener-
ates the necessary WSDL file to expose any Java class or PL/SQL package as a
Web service, it supports the Web Services Interoperability standards, and can
verify that Web services conform to the WS-I standards. JDeveloper make Web
services easy to build, as shown in Figure 2.
 The final feature I’ll discuss is the XML editor. JDeveloper enables XML-
based application development with features such as the XML Schema mod-
eler, XML code insight, and the XML tag property inspector. An enterprise
shop will still require a separate tool like XML SPY to do the heavy lifting, but
the XML editor in JDeveloper feels good. It’s strong enough to do the major-
ity of the XML work, but it’s not cluttered with extraneous features. It is easy
to add/delete/modify tags, as shown in Figure 3.

Summary
 Oracle has impressed me with their database products and their latest Java
IDE is no exception. This product is designed for enterprise class projects. Of
course, you can build GUIs and Web pages with it, but this tool’s strength is the
back end. This makes sense as JDeveloper’s original motivation was to be a tool
that was especially good at building Oracle DB applications in Java. If you’re
looking for a Java IDE with an attractive bang for the buck that makes it easy
for you to manage the life cycle of enterprise J2EE and Web services applica-
tions, consider JDeveloper 10g. I used to think of JDeveloper as a tool that was
married to the Oracle DB, but wasn’t a real threat to the leading Java IDEs. Java
continues to be a key component of Oracle’s corporate strategy. Their commit-
ment to JDeveloper is evident as 10g now joins the top IDE echelon.

 Figure 2 JDeveloper Web services wizard Figure 3 JDeveloper XML editor

www.SYS-CON.com/JDJ60 September 2004

elcome to the September
edition of the JCP column!
Each month you can read
about the Java Commu-

nity Process: newly submitted JSRs,
new draft specs, Java APIs that were
finalized, and other news from the
JCP. This month we’ll discuss the elec-
tions for the Executive Committees,
three new JSRs for the J2ME technol-
ogy, and news about the Community’s
first JSR.

Maintenance Review for JSR 1
 In December of 1999, IBM got the
JCP underway with its first JSR: the
Real-Time Specification for Java.
Since then the spec leadership
changed hands to TimeSys Corpo-
ration. Now this JSR is back in the
news with its recent completion of

a maintenance draft review with the
accompanying maintenance release
coming shortly. The goal of the review
is to clarify many portions of the spec
and to make minor API changes to
correct aspects of the RTSJ that were
unstable.

The Java Virtual Machine
Specification
 A second JSR that is in the main-
tenance review stage is JSR 924. It
highlights the changes that are
needed as part of the imminent
J2SE 5.0 platform release, calling
out several changes to class file for-
mats, instruction set, and loading
and linking.

Three New JSRs for the
J2ME Technology
 Originally submitted on June 1, JSR
246 (Device Management API) was ap-
proved by the ME EC after a so-called
JSR Review Reconsideration Ballot. This
proposed optional package for J2ME
CLDC configurations, led by Siemens,
provides a generic interface to the
device management implementation
in a device. It provides access to native
device management protocols and to
other functionality in the device such
as triggering management sessions and
change notification. JSR 246 is related
to JSR 232 wherein the former’s scope
is CLDC and the latter’s is CDC. Close
collaboration between the spec leads is
expected.
 Vodafone and Nokia have jointly
submitted JSR 248 (Mobile Service

Architecture for CLDC) and also JSR
249 (Mobile Service Architecture for
CDC). JSR 185 set a baseline for what
a complete collection of Java technol-
ogy for mobile devices should look
like. As such it focused on CLDC/MIDP
environments. JSR 249 plans to do the
same thing but is now focused at the
very high end of the market, the most
capable devices currently available,
and is using the CDC configuration
with the Foundation Profile as a start-
ing point. The expert group plans to
deliver a specification for such devices
and a road map document providing
the future technical direction. Closely
related to this effort is, of course, JSR
248, which picks up the course set by

JSR 185 for CLDC/MIDP-based devices,
focusing specifically on high-volume
handsets. Both JSRs are scheduled to
complete by September 2005.

Early Draft Review
 In JCP 2.6 all draft spec reviews are
publicly accessible, including what
used to be the Community Review and
is now called Early Draft Review. One
such review is currently underway for
JSR 223, Scripting Pages in Java Web Ap-
plications. The JSR makes it possible for
scripts to access and manipulate Java
objects and for scripting pages to be
used by Java server-side applications.

The EC Elections Are Coming Up!
 Autumn is near and so are the yearly
elections for the two Executive Com-
mittees. But before delving deeper I
say “Thank you!” to Richard Monson-
Haefel. Richard was elected last year to
the SE/EE EC as an individual member.
Richard has since found employment
with an analyst firm and felt that
continuing as an individual member
on the EC created the potential for a
conflict of interest; a decision we must
respect. Richard’s seat will remain
empty until the elections. For the ME
EC three nominated seats are coming
up: Insignia, RIM, and Sony; and two
elected seats: Intel and Texas Instru-
ments. For the SE/EE EC the three
nominated seats that are expiring are
Apache, Borland, and SCO; and the
elected seats are Macromedia and
Nokia Networks. The ratification vote
on Sun-nominated seats begins on
October 1 and the open election begins
on November 1. Terms are three years
with no limit on the number of terms.
 That’s it for this month. I’m very
interested in your feedback. Please
e-mail me with your comments, ques-
tions, and suggestions.

JSR Watch

Onno Kluyt

From Within the
Java Community Process Program

W

Onno Kluyt is the

director of the

JCP Program

Management Office,

Sun Microsystems.

onno@jcp.org

Updating the first JSR

Autumn is near and so are the yearly elections
for the two Executive Committees”“

PRODUCED BY

�������������������������������
�����������
��������������������������
���������
�����������������
�������������
�����������������������������
�����������������������
���������������������������
���������������������������
���������������������������
������������������

������������������������������
�����������������������������
�����������������������
����������������������
��������������
������������������������������
�������������������������
��������������������
��������������������
�����������������������
����������������
�������������������������������

��������������������
��

PRODUCED BY

��
PRODUCED BY

�����������
��������

����������

�����
���������

�����������
������������
���������
��������
����������������
������������������

������������������������
������������������

����������������
�����������������

��������������������������
�������������������������

���

���������������
��

��

�������������������������������������
����������
��
��
���
��
��
��������������������������

��
���
��
���
���
��������������������������������������

���
���
���
���
���
��
���
��

���������������������������������������

���������������������

������������������

���������
��

����������������������������������
��

���������������������������

www.SYS-CON.com/JDJ62 September 2004

here seems to be a lot of activ-
ity surrounding Java and open
source. Simon Phipps, chief
technology evangelist for Sun,

threw down the gauntlet to IBM with
his keynote at EclipseCon. He said that
IBM (who Simon once worked for)
already has at least four of their own
open source implementations of Java
and rather than everyone beating up
on Sun to open source Java, perhaps
IBM should step up to the plate with
one of their implementations.
 Following this, IBM’s VP of emerging
technology Rod Smith sent an open
letter to Sun chief engineer Rob Gingell
saying how they would answer Simon’s
challenge and work with Sun to create
an independent open source imple-

mentation of Java. Rod stated: “Simon’s
comment appears to be an offer to
jointly work toward this common goal.
IBM is a strong supporter of the open
source community, and we believe that
a first-class open-source Java imple-
mentation would further enhance
Java’s position.”
 After Simon seemingly got his wish,
Jonathan Schwartz disappointed
everyone with his reiteration that open
source would be the death of Java. His
rationale is that Microsoft will roll into
town and fragment Java as they had
already tried, and even without them
the open source model leads to market
fragmentation as has occurred with
Linux derivatives. Besides, Sun already
gives a lot of stuff to the open source

community (Open Office, Network File
System, etc.…) so they already practice
open source. And Java works fine with
the JCP.
 While Jonathan’s arguments do make
certain sense, Scott McNealy unfortu-
nately didn’t help the debate with his
flat rebuttal to IBM: “Go open source
DB2 and then you can tell me what to
do with my assets” (www.linuxworld.
com/story/44208.htm). To many who
sat on the fence up to this point, his
comments just added fuel to the fire
that Sun likes Java being theirs and are
playing dog in the manger.
 More confusion came as Raghavan
Srinivas, a Java technology evangelist
from Sun, stated, “We haven’t worked
out how to open source Java – but at

some point it will happen…it might
be today, tomorrow, or two years down
the road” (www.zdnet.com.au/news/
software/0,2000061733,39149502,00.
htm).
 The arguments flared up again at
JavaOne when Rob Gingell referred
to the IBM open letter as “corporate
terrorism.” Apart from the obvious lack
of sensitivity shown to the subject he
was using as his metaphor, it didn’t
help to initiate any kind of rational
discussion. Later, in the debate led by
Tim O’Reilly, it was pointed out that
all the arguments given by Sun against
open sourcing Java were just general
arguments against any kind of open
source. The Microsoft argument used
at JavaOne didn’t carry quite so much

weight this year, especially given that
Sun and Redmond have recently kissed
and made up. “Make no mistake: we
will open source Solaris,” Jonathan
Schwartz insisted, hence upping
considerably the amount of Sun license
capital that they are now contributing
to open source (http://weblogs.java.
net/pub/wlg/1543).
 Sun’s problem may be that while
they think Microsoft will ride into town
and fragment Java, ironically it may ac-
tually be their own stance that achieves
this. The recent SDO work by IBM and
BEA was done totally out of the JCP
community and runs counter to Sun’s
own JDO initiative. There are already
open source initiatives for Java such
as GNU (www.gnu.org/software/java/

java.html) and the Kaffee JVM (www.
kaffe.org). Eclipse is open source and
has overtaken NetBeans and fragment-
ed the tools space; SWT is open source
and has fragmented the Java desktop
space.
 What Sun should do is set up a
separate company owned by the JCP
members; this company should steer
Java but operate outside of Sun’s com-
mercial interests (i.e., fair use of Java
trademark, references to NetBeans in
JRE press releases, fair licensing of Java
technology, shared IP ownership). They
won’t, of course, but the bitter irony is
that this is just what IBM did with the
Eclipse foundation after Sun repeatedly
refused to join, saying it was too blue
for them.

@ the Back Page

by Henry Roswell

One Man’s Open Source,
Another Man’s Asset

T

Henry Roswell is a veteran

consultant who would like

to think he’s seen it all,

but is constantly amazed

by new events every day.

henry@sys-con.com

Sun’s problem may be that while they think Microsoft will ride
into town and fragment Java, ironically it may actually be their own

stance that achieves this”
“

SPEND LESS TIME PROBLEM SOLVING… AND MORE TIME DEVELOPING APPLICATIONS.

Join The Thousands of Companies Improving Java Application

Performance with Quest Software.

Whether it’s a memory leak or other performance issues,

Quest Software’s award-winning Java products — including

JProbe® and PerformaSure™ — help you spend less time trouble-

shooting and more time on the things that matter. Quest’s Java

tools will identify and diagnose a problem all the way down to

the line of code, so you no longer have to waste time pointing

fingers or guessing where the problem lies. Maximize your

team’s productivity with Quest Software by downloading a free

eval today from http://www.quest.com/jdj.

PerformaSure — a system-wide performance
diagnostic tool for multi-tiered J2EE applications
running in test or production environments.

JProbe — a performance tuning toolkit
for Java developers.

© 2004 Quest Software Inc., Irvine, CA 92618 Tel: 949.754.8000 Fax: 949.754.8999

